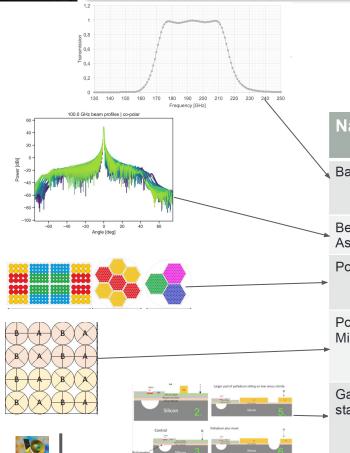

LiteBIRD: (instrumental) Systematics and Calibration

Sophie Henrot-Versillé on behalf of the LiteBIRD collaboration


To get to r we need to know our instruments

LiteBIRD

Otherwise....

	Name	Origin	Description	Major mode of Leakage
	Bandpass Mismatch	Spectral Filters	Edges and shape of the spectral filters vary from detector to detector.	l -> P
•	Beam Mismatch and Asymmetry	Optical beams	Beam shape differs from an ideal Gaussian form.	-> P E -> B
	Pointing Uncertainty	Attitute control, pointing reconstruction	Detector pointing at location different from that given by reconstructed pointing data.	l -> P E -> B
*	Polarisation Misalignment	Detectors	Uncertainty in polarisation calibration. Polarisation axis misaligned with measured direction.	E -> B
•	Gain mismatch and stability	Detectors and Calibration	Gain calibration mismatch between detectors. These could also be variable over time	I -> P

From Ranajoy Banerji

We want to measure r with an accuracy of (68%CL):

 $\sigma_r = 0.001$

Assuming:

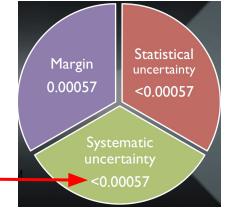
$$(\sigma_r = 0.001)^2 = \sigma_{\mathbf{syst}}^2 + \sigma_{\mathbf{fg}}^2 + \sigma_{\mathbf{margin}}^2$$

 $\sigma_{\rm syst}^2 + \sigma_{\rm fg}^2 + \sigma_{\rm margin}^2$

For each potential source of instrumental systematics:

We assign an error budget:

 $\sigma(r)_{sys} < 5.7 \text{ x } 10^{-6}$ as the budget (1% of total budget for systematic error)


3

From this we derive a requirement on the knowledge of the underlying instrumental parameters.

LiteBIRD

Those requirements are used to best define the calibration method.

Up to which level ?

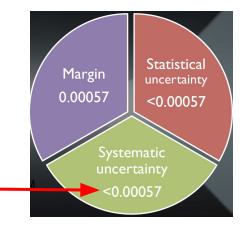
We want to measure r with an accuracy of (68%CL):

 $\sigma_r = 0.001$

Assuming:

$$(\sigma_r = 0.001)^2 = \sigma_{\text{syst}}^2 + \sigma_{\text{fg}}^2 + \sigma_{\text{margin}}^2$$

For each potential source of instrumental systematics:


We assign an error budget:

 $\sigma(r)_{sys} < 5.7 \text{ x } 10^{-6}$ as the budget (1% of total budget for systematic error)

From this we derive a requirement on the knowledge of the underlying instrumental parameters.

Those requirements are used to best define the calibration method.

A lot of studies have been performed

ID	Item	sub-	Source	w/o	w/
6		ID 6-1	Far side-lobes	HWP √	HWP √
	Beam shape		Near side-lobes	V	V
			Main beam width	V	V
		6-3-	Main beam flattening	V	V
		2		· ·	·
			Ghost		V
		6-5	cross polarization w/ HWP		V
		6-6	Diff. Beam Pointing btw. det.	V	
		6-7	Diff. Beam ellipticity btw. det.	V	
		6-8	Diff. Beam width btw. det.	V	
		6-9	Diff. Cross-pol btw. det.	V	
		6.10	Diff. C.L. Like Like		
7			Diff. Side-lobes btw. det. HWP at 4f	V	V
1			HWP at 4f side-band		
		7-3	HWP at 2f leakage	-	V
	polarization				
			HWP at harmonics		V
			Optical system	V	
8		8-1	HWP modulation effi- ciency		V
	enciency	8.2	Detector polarization ef-	V	V
		8-2	ficiency	v	v
9	Relative	9-1	Variation in time (ran- dom)	V	V
	Gain	9-2	Variation in time (1/f noise like)	V	V
		9-3	Inter frequency channels	V	V
		9-4	Diff. gain btw. det.(bias)	V	
		9-5	Diff. gain btw. det. (ran-	V	
10		10.1	dom)		-
10	Gain	10-1		V	V
11		11-1	Offset	V	V
	2 2 64 65 66 67 68 69 60 Absolute 10-1 60 60 61 11-1	11-2	Time variation in ran- dom	V	V
		11-3	Time variation in time with 1/f	V	V
		11-4	Time variation with HWP rotation		V
12		12-1	Absolute Polarization angle	V	V
		12-2	Relative Polarization an- gle	V	V
		12-3	Polarization leakage in- trinsic to HWP		V
		12-4	Polarization leakage due to HWP position error		V
		12-5	Variation in time (white	V	V
13		12.1	like, 1/f like) Individual Detector w/o		
15		15-1	HWP	V	
	1/f noise				

Beam knowledge: Leakage mainly from E to B, T to B may contribute			
	1		
T to B may contribute			
Beam knowledge	1		
Knowledge of the beam width			
Main beam ellipticity knowledge			
Effect happening inside the 5K shell			
Requirement to the knowledge of the cross pol	1		
characteristics in beam			
Leakage from T to B			
Leakage from T to B		14	0
Leakage from T to B		14	5
Leakage from E to B, similar to the pol. angle offset		15	-
Leakage from T to B			
Knowledge of 4f signal	1		
Direct leakage to the science band	1		6
Leakage from $2f$ to $4f$ due to finite observing	1		
time and non-linearity			Ľ
Lekakage from 3f, 5f and so on to 4f]		
Differential effect in the optical system			
Knowledge of the HWP modulation efficiency			
Knowledge of the detector polarization effi- ciency			
Random variation per 600sec.	1		
Requirement in fince			
Related to FG subtraction, and Band pass effect ID=15			
Leakage from T to B]		
Leakage from T to B			
No E to B as Parity conserved. Related to the			
Pol. efficiency in ID=8 Calibration with CMB dipole. Absolute power of Cl, i.e., the absolute value of r			
E to B Expectation value from Vender's info.	1	16	
Disturbances in time uncorrelated way: Perhaps			1
in a way that all the FC plane detector coher-			1
ently Disturbances in time correlated way:			
Wedge in transmissive HWP, tilt of the rotation			
axis of reflective HWP		17	-
Using CMB channels with C ₁ ^{EB} .]	17	
Inter frequency channels, inter detectors			1
knowledge of M_{QU} or M_{UQ} in Mueller matrix			
Requirement to the knowledge to the HWP ro- tation position			
Variance of pol. angle determination by STT			
Detector originated	1		

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13-2			V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			demodulation		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Common mode	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13-4	Inter channels	Ň	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13-5	Noise modeling	V.	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5	· ·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13-6	HWP temperature varia-		1
Image: consequence of the sequence of			tion in time with 1/f like		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13.7			1
Initial control of the second seco		1.5-7			v
Cosmic ray glitches 14-1 14-2 Common mode ing data compression ing data compression informat					
			noise for 2j		
				<u> </u>	
Image dual compression Image dual compression Image dual compression Band pass Frequency shift of the limit of limit of the limit of limit of				V	V
15. Frequency shift of the view of the start with WP differentiation. 15. Frequency shift of the view of view of the view of	glitches	14-2		√	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ing data compression)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15-	Frequency shift of the	V	
Image: constant of the second secon		1-1		- C	
If 5- Frequency shift of the $\sqrt{4}$ $\sqrt{4}$ effect 15- band shape wo HWP $\sqrt{4}$ 15- Band shape wo HWP $\sqrt{4}$ 15- Band shape $\sqrt{4}$ $\sqrt{4}$ 15- Beam shape in band w/o $\sqrt{4}$ 15- Beam shape in band w/o $\sqrt{4}$ 15- Beam shape in band $\sqrt{4}$ 15- Beam shape in band $\sqrt{4}$ 15- Gain variation in band $\sqrt{4}$ 15- Gain variation in band $\sqrt{4}$ 15- Gain variation in band $\sqrt{4}$ 15- Ion angle wobble in $\sqrt{4}$ 16- Ionegain $\sqrt{4}$ 16-1 Decord time constant $\sqrt{4}$ 16-2 Digrin freacoontin the max of $\sqrt{4}$					
Band pass effect 1-2 band band 1 15: Band shape w/o HWP V 15: Band shape in band V 15: Band shape in band V 15: Beam shape in band V 15: Gain variation in band V 15:5 Gain variation in band V 15:6 Instrumential Polariza: tion in band V 15:7 Relarization efficiency in band V 16:1 Detector time constant V 16:2 Digital fifter in readout system V 16:1 Imeccionaturatinnce in time complete Hyd/DW V 17:1 Detector regreent: participart (pd/D)/U V 17:2 Variation in time on g, white like or 1// like V 17:3 HwP 2' gyn/Dresone: lekkage from 2/ to 3/ V 17:4 Imec co		15			1
Band pass effect 15- 3.1 Band shape with with with with with with with with				v	v
Image: constraint of the second se				1	++
15. Baad shape V V 15. Beam shape in band w/o 3.1 HWP 15. Beam shape in band V V 15. Beam shape in band V V 15. Pol. angle wobble in V V 15.5 Gaia variation in band V V 15.5 Gaia variation in band V V 15.6 Instrumental Polarizz V V 15.7 Nearation efficiency in band V V 15.8 Outer band V V 15.8 Outer band V V 16.1 Detector time constant V V 16.2 Digital filter in readou V V 16.4 Imee constant variance in time con prove set as g in a model of (1 + gd(n)/dt v V 17.1 Detector response: pay view V V 17.1 Detector response: pay view worknowne: lackage from 2/1 to 4/1 V 17.1 Detector response: pay view worknowne: lackage from 2/1 to 4/1	effect		Band shape w/o HWP	V	
12.2 1 1 15. Beam shape in band w/o V 15. Beam shape in band V V 15.5 Gain variation in band V V 15.6 Instrumental Polarization V V 15.7 Polarization efficiency in band V V V 16.1 Detector time constant V V V 16.1 Time constant variance in time congraph in model of HWP V V 16.1 Time constant variance in time congraph in model of HQU/HV V V					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Band shape	V	V
3-1 HWP					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15-	Beam shape in band w/o	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3-1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15.	Ream chang in hand		
15. 4-1 Pol. hand angle wobble in 4-1 V V 15.5 Gain variation in band V V 15.6 Intervancental Polariza itosi in band V V 15.6 Intervancental Polariza itosi in band V V 15.7 Polarization efficiency in band V V 15.8 Outer band V V 16.1 Detector time constant V V 16.1 Detector time constant V V 16.3 Cross-talks V V 16.4 Innee constant variance in time constant variance in time constant variance in time constant set in a energinition (1 + gd(n))/(V - V 17.1 Detector respons: pa energinition (1 + gd(n))/(V - V V 17.1 Detector respons: pa energinition (1 + gd(n))/(V - V V 17.1 Detector respons: pa energinition (1 + gd(n))/(V - V V 17.1 Detector respons: pa energinition (1 + gd(n))/(V - V V 17.1 Detector respons: pa energ(n)/(V - N) V V <td></td> <td></td> <td>beam shape in band</td> <td></td> <td>v</td>			beam shape in band		v
4.1 band v v 15-5 Gaia variation in band V V 15-6 Instrumental Polariza V 15-7 Polarization efficiency in band V V 15-8 Outer band V V 15-8 Outer band V V 15-8 Outer band V V 16-1 Detector time constant V V 16-2 Digital filter in readout V V 16-3 Crossralits V V 16-4 Time constant variance in time constant variance in time constant variance in time constant variance V V 17-1 Detector respons: pa- rameterized as g in a model of (1 + gd(r))/(V V V 17-2 Variation in time on r. V V V 17-1 Detector respons: pa- model of (1 + gd(r))/(V V V 17-2 Variation in time on r. V V 17-3 Variation in time on r. V V 17/5 Va		3.2			
4.1 band v v 15-5 Gaia variation in band V V 15-6 Instrumental Polariza V 15-7 Polarization efficiency in band V V 15-8 Outer band V V 15-8 Outer band V V 15-8 Outer band V V 16-1 Detector time constant V V 16-2 Digital filter in readout V V 16-3 Crossralits V V 16-4 Time constant variance in time constant variance in time constant variance in time constant variance V V 17-1 Detector respons: pa- rameterized as g in a model of (1 + gd(r))/(V V V 17-2 Variation in time on r. V V V 17-1 Detector respons: pa- model of (1 + gd(r))/(V V V 17-2 Variation in time on r. V V 17-3 Variation in time on r. V V 17/5 Va					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				V	V
15-6 Instrumental Polariza- tion in band V 15-7 Relarization efficiency in band V 15-8 Outer band V 15-8 Outer band V 16-1 Detector time constant V 16-2 Digital filter in readout V 16-3 Digital filter in readout V 16-4 Digital filter in readout V 16-5 Digital filter in readout V 16-6 Digital filter in readout V 16-7 Time constant variance in time constant variance medical of (1 + gd(i))k(V - V 17-7 Detector response: parameterized as g in a model of (1 + gd(i))k(V - V 17-7 Variantion in time on r. V V 17-8 Variantion in time on r. V V 17-7 Variantion in time on r. V V 17-8 Variantion in time on r. V V 17-5 Variantion in time or r. V V 17-5 Variantion in tititim or r. V V					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		15-5	Gain variation in band	√	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{tabular}{ c c c c c }\hline \hline lice in band & & & & & & & \\ \hline 15.7 & Polarization efficiency in & & & & & & \\ \hline 15.8 & Outer band & & & & & & & \\ \hline 16.1 & Detector time constant & & & & & & \\ \hline 16.2 & Digital filter in readout & & & & & \\ \hline 16.3 & Constants & & & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.5 & Constants & & & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.5 & Constants & & & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 16.4 & Time constant variance & & & & & \\ \hline 17.4 & Detector response: parameterized as g in a model of (1+gdf)/d(t - qdf)/d(t - qdf)/d($		15-6	Instrumental Polariza-		V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			tion in band		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		15-7			1
15-8 Outer hand V Transfer function 16-1 Detector time constant V V 16-2 Digital filter in readout V V V 16-3 Consolable V V V 16-4 Time constant variance in time coupled to HWP V V 16-7 Toossalable V V 16-8 Consolable V V 16-1 Time constant variance in time constant variance in time constant set is a g in a model of (1 + gd(t))d(V - V 17-1 Detector response: pa- model of (1 + gd(t))d(V - V V 17-2 Variation in time on r. V V 17-2 Variation in time on r. V V 17-3 HWP 2' synchronous: testage from 2/1 to 4/1 V V 17-5 Variation in time or r. V V 17-5 Variation in time or r/1 file V V 17-5 Variation in time or r/1 file V V					- C
$\begin{tabular}{ c c c c c }\hline 16-1 & Detector time constant $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			ound		
$\begin{tabular}{ c c c c c }\hline 16-1 & Detector time constant $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$		15.9	Outer hand		
Transfer knowledge Image: Constraint of the second secon		1.5*0	Outer band	v	v
Transfer knowledge Image: Constraint of the second secon					+ +
Tendentian Tendentian V V 16-3 Cross-talks V V 16-3 Cross-talks V V 16-4 Time constant variance in time coupled to HWP V V 17-1 Detector represe: ps- model of 14 pt/01/01 – rd(0) V V 17-2 Waration in time on g, while like or 1/f like V V 17-3 HWP 2/gspectronors: leakage from 2/f o 3/f V V 17-4 time compared rescriptions: leakage from 2/f o 3/f V V 17-5 variation in time or j, whttp: Bke or 1/f like V V 17-5 variation in time or j, whttp: Bke or 1/f like V V 17-5 variation in time or j, whttp: Bke or 1/f like V V	100 100	10-1		V	V
16-3 Constalits √ √ 16-4 Time constant variance in time coupled to HWP √ 17-1 Detector response: pa- model of (1+gd(t))d(t) - rd(t)) √ √ 17-2 Variation in time on r, white like or 1// like √ √ 17-2 Variation in time on r, white like or 1// like √ √ 17-3 Image from 2/ to 4/ √ √ 17-4 Image from 2/ to 4/ √ √ 17-5 Image from 2/ to 4/ √ √ 17-6 Image from 2/ to 4/ √ √ 17-7 To 10 √ √ √ 17-5 Variation in time of r in √ √ √	function	16-2		√	V
			system		
In time coupled to HWP recolution recolution 17-1 Detector response: particular set in a moterized as g in a moterized set in a final set in time on s, with the set of the set in time on s, with the set of the set in time on s, with the set of the set in time on s, with the set of the set in time on s, with the set in time on s, with the set in the set in model (1 + set in the set in the set in the set in time of the set in the set in time of the set in the set in time of the set in the set in time of the set in time of the set in time of the set in the set in time of the set in time of the set in the			Cross-talks	V	V
In time coupled to HWP recolution recolution 17-1 Detector response: particular set in a moterized as g in a moterized set in a final set in time on s, with the set of the set in time on s, with the set of the set in time on s, with the set of the set in time on s, with the set of the set in time on s, with the set in time on s, with the set in the set in model (1 + set in the set in the set in the set in time of the set in the set in time of the set in the set in time of the set in the set in time of the set in time of the set in time of the set in the set in time of the set in time of the set in the		16-4	Time constant variance		V
revolution 17-1 Detector response: parameterized as g in a model of (1 + gd(1))(t - rd(1)) inearity 17-2 Wariation in time on g, v v 17-2 Wariation in time on g, v v v 17-3 Bandrage from 3/ to 4/ v v 17-4 Imme constant responses v v 17-5 Imme constant responses v v 17-4 time constant responses v in the PB model (1 + v) 17-5 Variation in time of r in v/ a v a when like or 1/ fike v			in time coupled to HWP		
17-1 Detector response: $p_{a} \cdot \sqrt{v}$ nametrized as g in a model of (1 + gd(r))d(r - rd(r)) 17-2 Variation in time on g, \sqrt{v} white like or 1/f like 17-3 HWP 2f synchronous: kalage from 2f to 4f 17-4 time constant τ (sec) ik] \sqrt{v} in the PB model (1 + gd(r))d(r - rd(r)) a white like or 1/f like 17-5 Variation in time of τ in \sqrt{v} a white like or 1/f like					
Non- linearity Transformation in time on g, where the second se		17-1		1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		17-1	remeterized as a in a	×.	v
Intentity rt(t) rt(t) 17-2 Waration in time on g, which is the original state of the state	March				
17-2 Variation in time on g, $\sqrt{\sqrt{v}}$ white like or $1/f$ like 1 17-3 HWP 2f synchronous: heakage from 2f to 4f 17-4 time constant τ (sec/nK) \sqrt{v} in the PB model (1 + gd(t))(t - \tau(t))) 17-5 Variation in time of τ in \sqrt{v} a white like or $1/f$ like					
white like or 1/f like 17-3 HWP 2 i synchronous: leakage from 2 to 4 f 17-4 time sensation f (sci)(K) $\sqrt{-\sqrt{-\frac{1}{2}}}$ $\frac{17-4}{100}$ time optimized (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + \frac{17-5}{100} (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + \frac{17-5}{100} (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + \frac{17-5}{100} (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + \frac{17-5}{100} (sci) 1 + $\frac{17-5}{100}$ (sci) 1 + \frac{17-5}{100}	intearity	10.0			+ , +
17.3 HWP 2f synchronous: leakage from 2f to 4f 17.4 time constant τ (sec/ iK) \sqrt{i} im the PB model (1 + $g(t))(it - \tau(t))$ 17.5 Variation in time of τ in \sqrt{v} a white like or (1/f like		17-2		V	V
leakage from 2 f to 4 f 17-4 time constant τ [sec/ μ K] $\sqrt{-\sqrt{-1}}$ in the PB model (1 + gd(μ)d($\tau - \tau d\mu$)) 17-5 Variation in time of τ in $\sqrt{-\sqrt{-1}}$ 17-5 variation in time or 1 f ike $\sqrt{-\sqrt{-1}}$					
17-4 time constant τ (sec/ κ K) $\sqrt{\sqrt{1 + \frac{1}{2}}}$ in the PB model (1 + $gd(t)du(t - \tau du))$ 17-5 Variation in time of τ in $\sqrt{\sqrt{1 + \frac{1}{2}}}$		17-3			V
in the PB model $(1 + gd(t))d(t - \tau d(t))$ 17-5 Variation in time of τ in $\sqrt{\sqrt{t}}$ a white like or $1/f$ like			leakage from $2f$ to $4f$		
in the PB model $(1 + gd(t))d(t - \tau d(t))$ 17-5 Variation in time of τ in $\sqrt{\sqrt{t}}$ a white like or $1/f$ like					
in the PB model $(1 + gd(t))d(t - \tau d(t))$ 17-5 Variation in time of τ in $\sqrt{\sqrt{t}}$ a white like or $1/f$ like		17-4	time constant 7 [sec/uK]	V	V
$\begin{array}{c c} gd(t))d(t - \tau d(t)) \\ \hline 17.5 Variation in time of \tau in \\ a white like or 1/f like \end{array}$					1 ° 1
17-5 Variation in time of τ in $\sqrt{-\sqrt{-1}}$ a white like or $1/f$ like					
a white like or 1/f like		17.5	Variation in time of τ in	N	1
		1.00			
17-0 Data Compression V V		17.6			1 1
		17-0	Data Compression	N	V

	in req. flow L3.08 1/10 of white noise at the
	spin frequency 0.1rpm=1.6mHz
	Common mode in FP
	With FG component separation
	Requirements to determine the noise stationar-
	ity; how long period the noise to be stable
	Loading from HWP changes the detector noise
	the time correlated variation would cause the 1/1
	noise
Î	Differential emissivity in the two axes will pro-
	duce 2f signal. The 1/f time variation of HWF
	temperature produces the fluctuation of the 2f
	which may be leaked to the 4f. Note that the
	multi-layer stacked AHWP may smear out this
	effect.
	Wafer base due to phonon propagation
	Additional noise due to down-sampling, Data
	compression
	Band shift in a detector pair
	Knowledge of the band position
	Diff. of the band shape in a detector pair
	pair of the band shape in a detector pair
	Knowledge of the band shape
	Diff. of frequency dependence of beam shape in
	band, caused by the spectrum difference. Cali
	bration using planets may cause difference
	Frequency dependence of beam shape in band
	caused by the spectrum difference. Calibration
	using planets may cause difference
	Sinuous antenna wobble, may be canceled ou
	using combination of Q/U and two sides
	Gain calib. using CMB dipole may differ fron
	that of FG due to spectrum diff.
	Frequency dependence of IP in HWP
	Related to the frequency dependence of the
	HWP retardance and/or sinuous antenna re
	sponsivity
	Contamination from the outside of frequency
	band.
	Detector time constant
	Possible effect in time correlated way which
	cause the spatial correlation
	Cross-talks in frequency domain
	random 1/f type variation in time
	Assuming maximal loading to the instrument in
	uK to set the working position
	Non-stationarity of the non-linearity due to the
	change of the loading position

May be related to ID=7, causing leakage to 4f, due to large 2f signal, To be related 2f emission

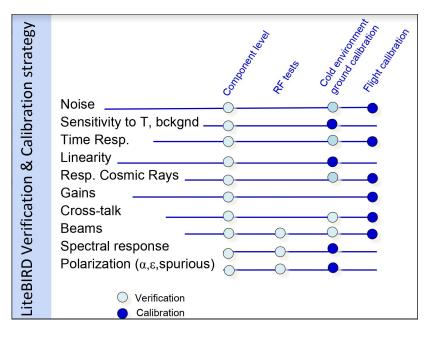
in 18-1-2 Knowledge of the time response Possible time dependence of the time constant Possible effect in data compression process

the	18	Non- uniformity	18- 1-1	Transmissive HWP		V	Azimuthal angle dependence in oblique inci- dence of light
ar-		in HWP	18- 1-2	Differential emissivity of transmissive HWP		V	Production of 2f signal, can be leaked to 4f with the position dependence.
se.			18-2	Reflective HWP		V	Azimuthal dependence in oblique incident an- gle. We will not consider this source.
1/f ro- WP			18-3	Position dependent HWP temperature fluc- tuation in white noise like		V	Increase the detector noise. We do not consider this source as this is related to the reflective HWP.
2f the his	19	Uncertainties difficult to model and simulate	19-1	Multiple reflection be- tween HWP and FP		V	Requirement to HWP AR. Two ways: back-of- the envelope calculation to get first order req. In GRASP, the multiple reflection with HWP is difficult to simulate. One way is to measure the beam pattern w/ and w/o HWP using the real instruments.
-			19-2	fknce	V		1/f noise f _{knee} is unknown unless the real in- struments are tested, assigned for the case w/o HWP
-			19-3	Gain variation	V	V	Actual gain variation strongly depend on the in- strument environment, and difficult to model in a simulation
			19-4	FG spectrum and un- known components	V	V	Unknown features of the spectra and compo- nents in foregrounds

options with and without HWP. The column of Δr or σ_r shows the expected error of r. Details are given in each section. N.A. means "Not Available" for the sources that we have not yet studied and assign the 1% error budget of 5.6×10^{-6} as the requirement. The ID=13 (1/f noise) shows the σ_r values, while other sources show Δr values.

credit: Concept Design Report

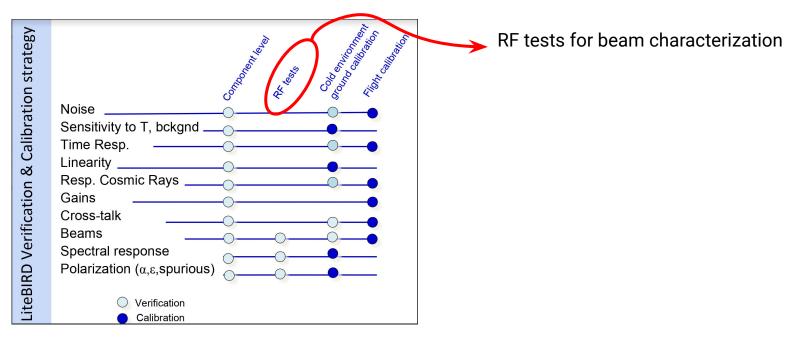
The requirements are being and will be updated and further refined



How ? verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

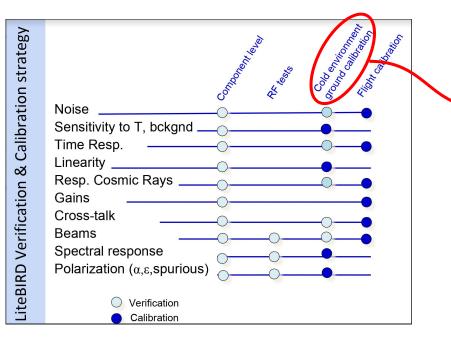
- on the ground and in-flight
- from component level to full integrated instruments



LiteBIRD verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

- on the ground and in-flight
- from component level to full integrated instruments



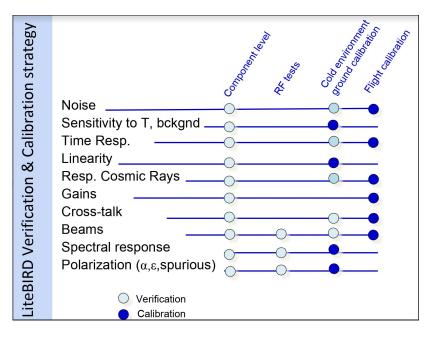
LiteBIRD verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

- on the ground and in-flight
- from component level to full integrated instruments

RF measurements for beam characterization

Cold environment "flight-like" loading
conditions on the instruments+calibration sources in a big cryogenic facility



LiteBIRD verification and calibration strategy

To reach the required accuracies the calibration strategy is setup in several steps. We will rely on measurements:

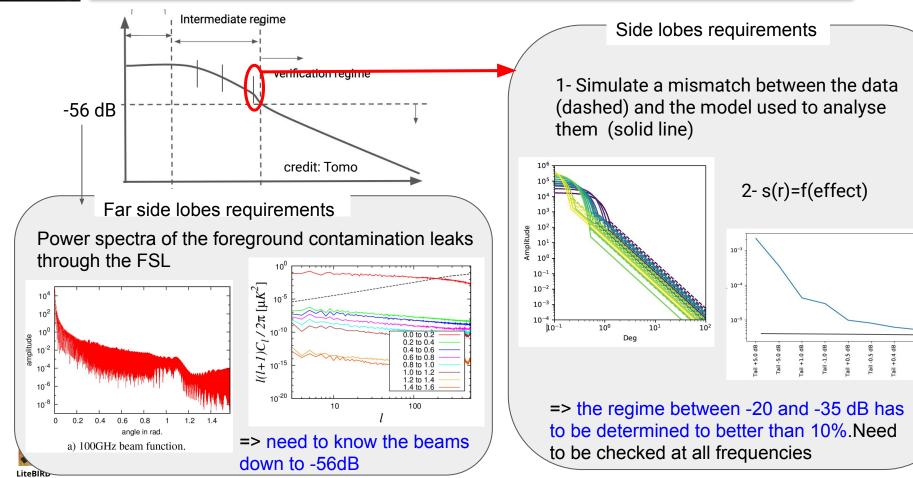
- on the ground and in-flight
- from component level to full integrated instruments

RF tests for beam characterization

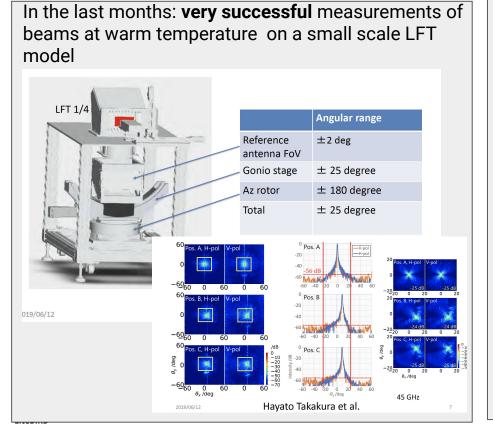
Cold environment "flight-like" loading conditions on the instruments+calibration sources in a big cryogenic facility

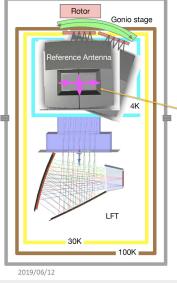
=> In this talk I will focus on:

- Beams
- Spectro-polarimetry


(and will not address component level tests)

beams requirements


-0.4 dB

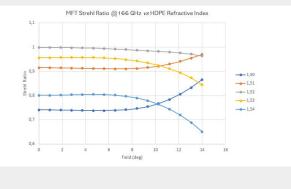

RF ground measurements for LFT

The full strategy is being addressed and further refined with on-going measurements in Japan

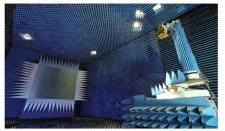
=> Next steps: cold measurements

Reference antenna + Gonio + Az rotor

	Angular Range
Reference antenna FoV	$\pm 10 \deg x \pm 2 \deg$
Gonio stage	-1 ~ +15 degree
Az rotor	\pm 180 degree
Total	\pm 25 degree


RF ground measurements for MHFT

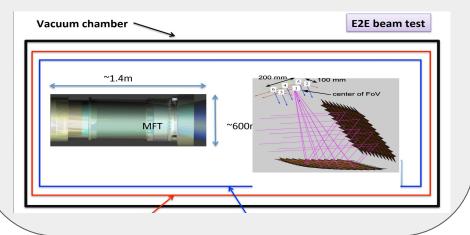
credit: the MHFT RF working group +CNES Bruno, Jon, Cristian, Hiro, Marco, Marco


We are currently studying the best strategy, to build up a model fed with:

- sub-system, semi-integrated and integrated level measurements
- warm/cold measurements

Strehl ratio for various refraction indices of lenses (typical of cold->warm variations)

Examples of on-going studies



Modèle de vol de Saphir, instrument du satellite Megha-Tropiques, en essais en BCMA.

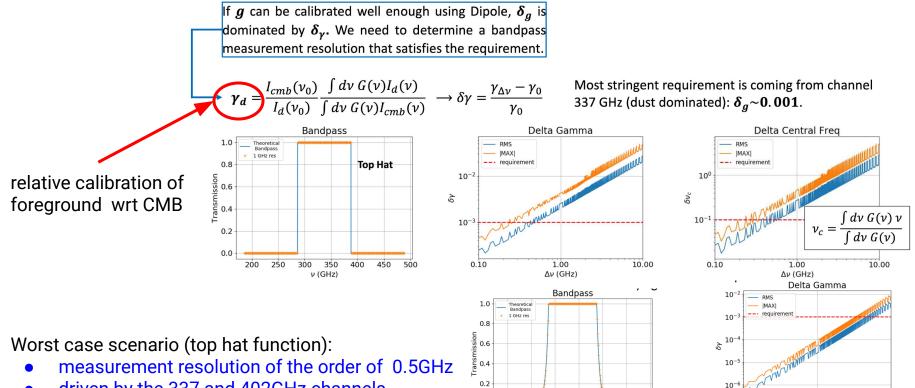
Antenna models will be built from MHFT beam simulations provided by Jon for 100, 166, 195, 280 and 402 GHz (reminder: the BCMA - Base Compacte de Mesure d'Antenne - needs to be upgraded to match the higher frequencies)

Those models will be further tested & characterized with the use of submm sources, and the measurement compared to the model to assess the accuracy that can be reached for LiteBIRD. [feasibility study]

This will be performed in the coming months.

bandpass knowledge requirements

credit: Tommasso


1.00

Δv (GHz)

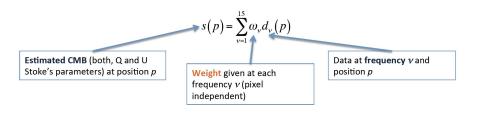
0.10

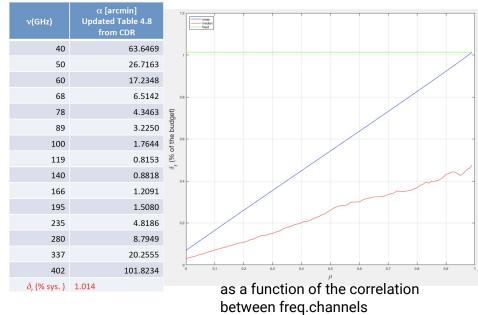
10.00

 $d = \boldsymbol{g}(I_{cmb} + \boldsymbol{\gamma}_{d}I_{d} + \boldsymbol{\gamma}_{s}I_{s}) \pm \boldsymbol{g}\varepsilon[(Q_{cmb} + \boldsymbol{\gamma}_{d}Q_{d} + \boldsymbol{\gamma}_{s}Q_{s})cos2\varphi + (U_{cmb} + \boldsymbol{\gamma}_{d}U_{d} + \boldsymbol{\gamma}_{s}U_{s})sin2\varphi] + n$

0.0

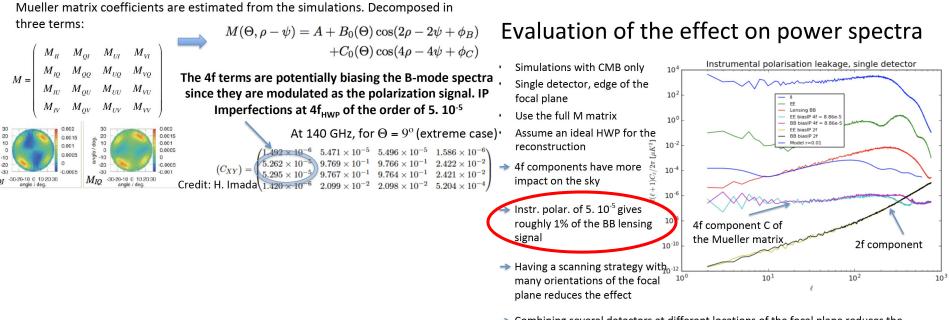
200 250 300 350 400 450 500


v (GHz)


driven by the 337 and 402GHz channels.

polarisation angle requirements

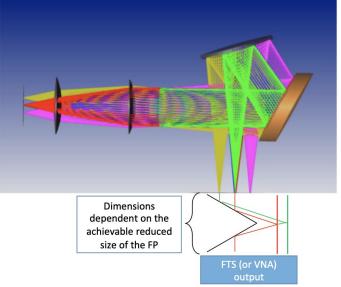
The polarization angle requirements on each frequency induced by the component separation process:

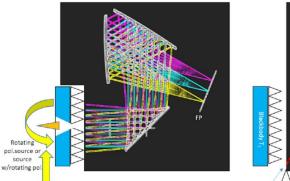


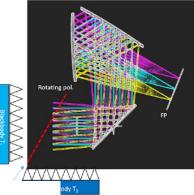
LiteBIRD

=> The absolute polarization angle should be known with a resolution of the order of the arcmin (the requirements are driven by the 119 and 140GHz frequency bands)

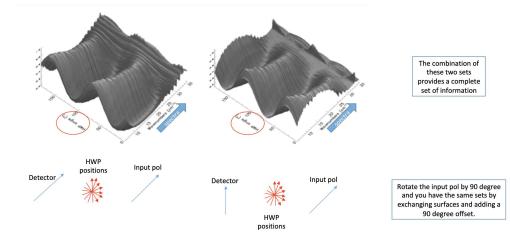
HWP related systematics


Combining several detectors at different locations of the focal plane reduces the effect since it is observed with different phases




Spectro-polarimetry ground measurements credit: Giorgio

The presence of a polarization modulator couples the two tests:


- Spectral Response
- Polarimetric sensitivity
- => the instrument needs to be cold
- => within a cold "flight-like" environment

Expected output : the datacube

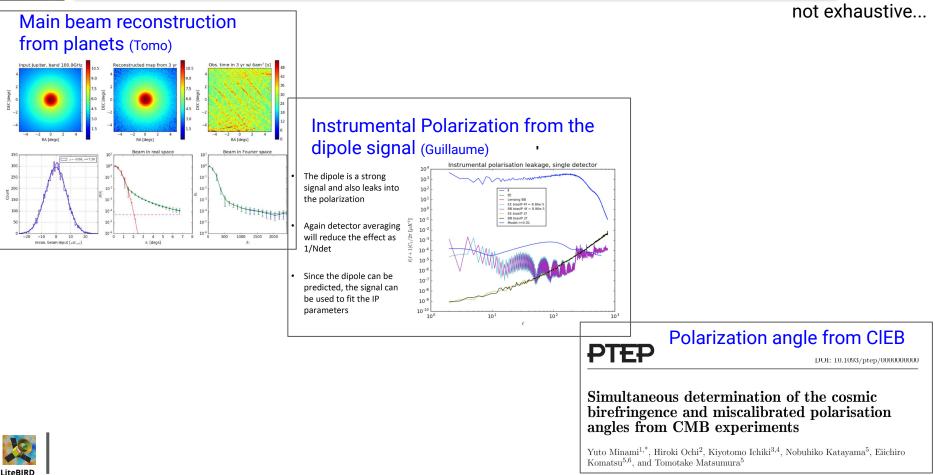
cold "flight-like" ground measurements

"a la Planck-HFI" strategy: Advanced Instrumentation Lab. today Fully integrated HFT calibration > preparation through the JSG > lessons from Planck **HFI example** > experience from other experiment > design of a dedicated facility 80K shield 20K shield 2K shield Main beam SOURCE Far side lobes Spectral response sources Time response 0.1K cosmic ray test cryostat Optical polarisation Thermo-optical coupling, bckgnd @IAS Linearity ETS verification and calibration. Absolute response Detection noise cryostat held last week to start designing the new cryo-chamber Crosstall filter wheel reference integrating sphere bolometer Saturne Tests in the reference bolometer FTS and external sources Credit: F. Paiot et al. Astronomy and Astrophysics, Volume 520, id.A10, 15 pp.

Foreseen facilities

The Erios cryostat (6x4m) at LAM/Marseille

MHFT in France


NB: needs to be upgrade to go to lower temperature (77K so far)

credit: Guilaine

flight calibration

looking into the future

The LiteBIRD calibration operations are very challenging !

- The Systematics JSG teams are working hard to update the requirements for each frequency bands. Next step will be to <u>couple systematic effects</u> and further refine the analysis in collaboration with the foreground JSG, and perform <u>simulations</u>. In parallel, mitigation is the key to get to low-ell: the implementation of HWPs and the LiteBIRD scan strategy will help for that.
- The Calibration JSG teams are deeply involved in defining the best strategy to meet the requirements, as well as to prepare the calibration devices and the facilities, but also making sure to get the longer possible time in the LiteBIRD schedule for the calibration operations (and with instruments as much integrated as possible).

Cosmic rays

