LiteBIRDの系統誤差の研究

石野宏和、魚住聖、樹林敦子(岡山大) 松村知岳、菅井肇 (Kavli IPMU) 今田大皓、長谷部孝、関本裕太郎(JAXA/ISAS) 永田竜、羽澄昌史 (KEK) Martin Bucher, Guillaume Patanchon (APC, Paris U.) 他LiteBIRD チーム 2018年3月23日 日本物理学会春季大会

LiteBIRD

Lite (Light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

http://litebird.jp/

LiteBIRDは、宇宙マイクロ波背景放射(CMB)の偏光を究極の感度で測定することを目的とする次世代の科学衛星。

全天を3年間かけて観測することにより、大角度スケール (2 $\leq l \leq 200$)のBモード偏光スペクトルを測定。 原始重力波の強度を示す、テンソル・スカラー比たを $\delta r < 0.001$ の精度で測定。

誤差の内訳

• 総誤差

•
$$\delta r = \sqrt{\delta r_{stat}^2 + \delta r_{syst}^2 + \delta r_{margin}^2} < 1.0 \times 10^{-3}$$

・誤差の振り分け

• $\delta r_{stat} = \delta r_{syst} = \delta r_{margin}$

•統計誤差(前景放射除去とレンジングを含む)

 許容誤差:δr_{stat} < 5.7 × 10⁻⁴

- 系統誤差
 - ・
 許容誤差:δr_{syst} < 5.7 × 10⁻⁴
 - 系統誤差のそれぞれのBモードパワースペクトルへの寄与は、レンジングの1%とする。

系統誤差の要因と種類

Category	Effect	Mitigation
Diff. gain	T -> B	Pol. Modulation
Diff. pointing	dT -> B	Pol. Modulation
Diff. beam width	dT -> B	Pol. Modulation
Diff. beam ellip.	dT -> B	Pol. Modulation
Pointing knowledge	E -> B	Star Tracker
Gain drift	E -> B	Gain calibration
Beam width drift	E -> B	Beam calibration
Pol. angle	E -> B	CI_EB
1/f noise	Det> B	Pol. Mod. or Fast scan
Bandpass mismatch	T -> B	Pol. Modulation
Cosmic ray glitches	Det> B	Template subtraction
Time constant	Det> B	Calibration
Side-lobe	T -> B	Beam calibration
Half Wave Plate	T -> B, E -> B	Calibration

T: CMB 2.7K monopole, dT: CMB temp. anisotropies, E: E-mode pol, B: B-mode pol., Det.: Detector

回転半波長板に伴う系統誤差

半波長板の電波の伝播をジョーンズ行列でモデル化:

D. O'Dea et al., MNRS 376 , 1767 (2007)

$$\begin{pmatrix} E_{s}' \\ E_{p}' \end{pmatrix} = \begin{pmatrix} 1+h_{1} & \zeta_{1}e^{i\chi_{1}} \\ \zeta_{2}e^{i\chi_{2}} & -(1+h_{2})e^{i\beta} \end{pmatrix} \begin{pmatrix} E_{s} \\ E_{p} \end{pmatrix} = J \begin{pmatrix} E_{s} \\ E_{p} \end{pmatrix}$$

理想的な半波長板の場合、 $h_1 = h_2 = \zeta_1 = \zeta_2 = \beta = 0$

 h_1, h_2 は透過率、 ζ_1, ζ_2 はQとUの混合、 β は位相角のずれを表す。

理想的でない場合でも、それらのパラメータを正確に測定できれば、 系統誤差は生じない。

それらのパラメータの測定誤差が系統誤差の要因。 →系統誤差を見積もり、要求される測定誤差を評価する。

系統誤差の見積もりの手順(1)

(1)シミュレーション上でCMBマップを全天スキャン。 →スピンと歳差運動、地球の公転運動を組み合わせた手法 (2)時系列疑似データを生成する。

CMBのマップ。 温度揺らぎとEモードのみ 含まれる。

90分=1歳差、9スピン

1ヶ月 ^{Mollweide view}

2018/03/23

世学会 東京理科大学

1日

系統誤差の見積もりの手順(2)

ある空のピクセルに対するi 番目の観測データは次の式で与えられる: $p_i = \vec{w_i}^t H_i \vec{s} + n_i = \vec{d_i}^t \vec{s} + n_i$

 $\vec{s}^{t} = (I, U, V, Q)$ は、ある空のピクセルのストークスパラメター $\vec{w}_{i}^{t} = 1/2(1, \sin 2\psi_{i}, 1, \cos 2\psi_{i})$ は検出器の偏光方向ベクトル

系統誤差の見積もりの手順(3)

半波長板の特性が完全に知られていれば、ストークスパラメータの解は $\vec{\tilde{s}} = \vec{s} + \left(\sum_{i} D_{i}\right)^{-1} \left(\sum_{i} \vec{d}_{i} n_{i}\right)$

半波長板の特性に測定誤差があれば、

$$\vec{\tilde{s}} = \left(\sum_{i} D_{i}\right)^{-1} \left(\sum_{i} D_{i'}\right) \vec{s} + \left(\sum_{i} D_{i}\right)^{-1} \left(\sum_{i} \vec{d}_{i} n_{i}\right)$$

系統誤差の見積もりの手順(4)

$$D'_{i} = H^{t}_{i}W_{i}H_{i}', \qquad H'_{\mu\nu} = \frac{1}{2}Tr(\sigma_{\mu}J'(\phi_{i})\sigma_{\nu}J'^{+}(\phi_{i}))$$

 $J' = \begin{pmatrix} 1 - 0.01 + dh_1 & d\zeta_1 \\ d\zeta_2 & -(1 - 0.01 + dh_2)e^{i(5^\circ + d\beta)} \end{pmatrix}$

 $J'(\phi) = R(\phi + d\phi)J'R(-\phi - d\phi)$

ここで、 $h_1 = -0.01, h_2 = -0.01, \beta = 5^{\circ}$ を採用 (G. Pisano et al.)

再構成されたストークスパラメータから、Bモードパワースペクトルを計算。 雑音はOにし、CMB自身の漏れ込み(主にEモードからBモード) を評価。 計算結果(1)

$$J' = \begin{pmatrix} 1 - 0.01 + dh_1 & 0 \\ 0 & -(1 - 0.01)e^{i(5^{\circ})} \end{pmatrix}$$

 $J'(\phi) = R(\phi)J'R(-\phi)$

日本物理学会 東京理科大学

計算結果(2)

J' =

非均一性があると、4f成分が生じるため、Eモードからの漏れ込が大きくなる

日本物理学会 東京理科大学

 $\begin{array}{ccc} 1 - 0.01 + dh_1 \cos \phi & 0 \\ 0 & -(1 - 0.01)e^{i(5^{\circ})} \end{array}$

 $J' = \begin{pmatrix} 1 - 0.01 & d\zeta_1 \\ 0 & -(1 - 0.01)e^{i(5^{\circ})} \end{pmatrix}$

 $J'(\phi) = R(\phi)J'R(-\phi)$

QとUの混合が原因

計算結果(4)

$$J' = \begin{pmatrix} 1 - 0.01 & 0 \\ 0 & -(1 - 0.01)e^{i(5^{\circ})} \end{pmatrix}$$

QとUの混合が原因。回転位置の決定精度は、レンジングの1%を要求すると、 1arcmin以下。

日本物理学会 東京理科大学

2018/03/23

日本物理学会 東京理科大学

βは偏光変調率のみに効き、TやEモードからの漏れ込はつくらない。 黒い線は、計算機の計算精度に起因するもので、系統誤差を導入しなくても生じる。

14

計算結果(6)

 $J' = \begin{pmatrix} 1 - 0.01 & 0 \\ 0 & -(1 - 0.01)e^{i(5^{\circ} + d\beta)} \end{pmatrix}$

 $J'(\phi) = R(\phi)J'R(-\phi)$

CMBの入力マップに、レンジングBモードを入れて、レンジングがどのくらいの精度で再現されるか再計算。

- LiteBIRDの系統誤差について、半波長板をジョーンズ行列でモデル化し、 そのパラメータに対して要求される測定精度を求めた。
- それぞれのパラメータに対して、重力レンズ効果で生じるBモードスペク トルの1%以下になるように要求する。
- 系統誤差の要因として、主にCMBのEモードからの漏れ込みを評価。
 βに関しては、レンジングの再構成精度。
- 結果:
 - $dh_1 < 0.01$, $d\zeta_1 < 0.001$, $d\beta < 5^\circ$
 - ・半波長板の回転位置精度く1 arcmin
- 今後:
 - 前景放射を入れた評価。
 - 同時に多重のパラメータの不定性を入れた評価。

バックアップスライド

偏光の測定には、偏光感度が直交する二つのアンテナを用いる。

dx = (無偏光成分) + (偏光成分) dy = (無偏光成分) - (偏光成分)

⇒ (dx−dy)/2 = (偏光成分)

x方向とy方向の偏光に感度がある検出器の差をとることにより、偏光成 分を測定

しかしながら、二つの検出器の特性(利得・ビーム形状・方向位置)に差があると、無偏光が入射されても、あたかも偏光信号があるように見えてしまう。

回転半波長板を用いるメリット

HWP

回転半波長板は、入射偏光を回転周波数の4倍の周波数で変調する。

半波長板の回転に伴い、偏光方向が回転するので、一つの検出器のみ で偏光を測定することができる。

従って、二つの検出器の差をとる必要がなくなり、無偏光からの漏れ 込が軽減される。また、十分高い周波数で変調すれば、1/f雑音の影響 も軽減される。

$$\begin{array}{rcl} ({\pmb H})_{\rm II} &\simeq & 1+Re(h_1)+Re(h_2) \\ ({\pmb H})_{\rm IU} &\simeq & (\zeta_1-\zeta_2)\cos 2\phi + [Re(h_1)-Re(h_2)]\sin 2\phi \\ ({\pmb H})_{\rm IV} &\simeq & 0 \\ ({\pmb H})_{\rm IQ} &\simeq & [Re(h_1)-Re(h_2)]\cos 2\phi - (\zeta_1-\zeta_2)\sin 2\phi \\ ({\pmb H})_{\rm UI} &\simeq & (-\zeta_1+\zeta_2)\cos 2\phi + [Re(h_1)-Re(h_2)]\sin 2\phi \\ ({\pmb H})_{\rm UU} &\simeq & (\zeta_1+\zeta_2)\sin 4\phi - [1+Re(h_1)+Re(h_2)]\cos 4\phi \\ ({\pmb H})_{\rm UV} &\simeq & [-Im(h_1)+Im(h_2)+\beta]\cos 2\phi \\ ({\pmb H})_{\rm UQ} &\simeq & [1+Re(h_1)+Re(h_2)]\sin 4\phi + (\zeta_1+\zeta_2)\cos 4\phi \\ ({\pmb H})_{\rm VI} &\simeq & 0 \\ ({\pmb H})_{\rm VU} &\simeq & [Im(h_1)-Im(h_2)-\beta]\cos 2\phi \\ ({\pmb H})_{\rm VU} &\simeq & -[1+Re(h_1)+Re(h_2)] \\ ({\pmb H})_{\rm VQ} &\simeq & [-Im(h_1)+Im(h_2)+\beta]\sin 2\phi \\ ({\pmb H})_{\rm QI} &\simeq & [Re(h_1)-Re(h_2)]\cos 2\phi + (\zeta_1-\zeta_2)\sin 2\phi \\ ({\pmb H})_{\rm QU} &\simeq & [1+Re(h_1)+Re(h_2)]\sin 4\phi + (\zeta_1+\zeta_2)\cos 4\phi \\ ({\pmb H})_{\rm QU} &\simeq & [Im(h_1)-Im(h_2)-\beta]\sin 2\phi \\ ({\pmb H})_{\rm QU} &\simeq & -(\zeta_1+\zeta_2)\sin 4\phi + [1+Re(h_1)+Re(h_2)]\cos 4\phi \\ \end{array}$$