LiteBIRD 計画における系統誤差 の研究

魚住聖, 石野宏和, 松村知岳_A, 羽澄昌史_B, 永田竜_B, 片山伸彦_C, 菅井肇_C, 岡山大理, JAXA/ISAS_A, 高工研_B, Kavli IPMU_C 他LiteBIRD Working Group

- ・ インフレーションモデルと原始重力波からのBモードCMB偏光
- LiteBIRD計画の概要
- 測定系統誤差を抑えるためのscan strategyの研究

Goal: Verification of inflation using CMB

- Inflationary universe theory predicts generation of primordial gravitational waves.
- Primordial gravitational waves leave a large vortex-like patterns "inflation fingerprint" called B-mode on the CMB polarization map.
- LiteBIRD observes the CMB polarization by precisely scanning all sky in space.

LiteBIRD

Lite (Light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection (http://litebird.jp/)

LiteBIRD is a next generation scientific satellite aiming to measure polarization of Comic Microwave Background (CMB) at unprecedented sensitivity.

Mission Requirements:

- Measurement of B-mode polarization spectrum of large angular scale (by three-year observation of all sky.
- Measurement of the tensor-to-scaler ratio r, that represents primordial gravitational waves, at precision. (w/o subtracting the gravitational lensing effect.)

139 members, international and interdisciplinary (as of Jun 27, 2016)

LiteBIRD Measurement Precision (at r=0.01)

Why the $\delta r < 0.001$ goal?

- Many models predict r>0.01. \rightarrow Discovery at >10 σ .
- In case primordial gravitational waves are not seen:
 - Focus on models with less parameters (Occam's Razor)
 - Most single field slow-roll says

$$r\simeq 0.002 {\left(\frac{60}{N}\right)^2} {\left(\frac{\Delta\phi}{m_{pl}}\right)^2}$$
 Lyth relation

N: e-folding, m_{pl} : reduced Planck mass

- If LiteBIRD achieves $\delta r < 0.002$ (95%C.L.), those that satisfy $\Delta \phi > m_{pl}$ in the typical inflation models are rejected.
 - Important milestone in the goal to identify the correct models.
 - Possible to obtain similar results in more modeldependent analyses.

Observation Apparatus Overview

Scan Strategy

- 地球-太陽軸に対して、歳差角α,スピン角βで回転する
- 全天スキャンからの条件: α+β>90°
- 太陽からの光流入を避けるための条件: α+β<95°
- 歳差時間・スピン回転数もある程度の自由度がある
- 半波長板無し(最悪のケース含む)を仮定して、Bモード偏光 測定を最も有利にするパラメータセットは何か?

First important parameter :Cross-link

Vary α , β under condition α + β =95°, precession time=1.51 hrs, spin revolution rate=0.3 rpm

 $\begin{aligned} \mathbf{Temperature-to-Bmode leakage :} \\ \Delta C_{\ell}^{BBg} &= \frac{1}{8} \langle |\tilde{h}_{2}|^{2} \rangle |\delta g_{1} + i\delta g_{2}|^{2} C_{\ell}^{TT}, \end{aligned} (26) \\ \Delta C_{\ell}^{BBp} &= \frac{1}{32} \langle |\tilde{h}_{1}|^{2} \rangle \left| \rho_{1} e^{i\chi_{1}} + \rho_{2} e^{i(\chi_{2} + \pi/4)} \right|^{2} \ell^{2} C_{\ell}^{TT}, \end{aligned} (27) \\ &+ \frac{1}{32} \langle |\tilde{h}_{3}|^{2} \rangle \left| \rho_{1} e^{-i\chi_{1}} + \rho_{2} e^{-i(\chi_{2} - 3\pi/4)} \right|^{2} \ell^{2} C_{\ell}^{TT} \end{aligned} \\ \Delta C_{\ell}^{BBe} &= \frac{1}{4} \left| \Im \left[\frac{\delta b_{\ell 2}^{1} + \delta b_{\ell 2}^{2}}{b_{\ell 0}} \right] \right|^{2} C_{\ell}^{TT} \\ &+ \frac{1}{8} \langle |\tilde{h}_{4}|^{2} \rangle \left| \frac{\delta b_{\ell 2}^{1} - \delta b_{\ell 2}^{2}}{b_{\ell 0}} \right|^{2} C_{\ell}^{TT}, \end{aligned} (28) \\ &+ \frac{1}{8} \langle |\tilde{h}_{4}|^{2} \rangle \left| \frac{\delta b_{\ell 2}^{1} - \delta b_{\ell 2}^{2}}{b_{\ell 0}} \right|^{2} C_{\ell}^{TT} \end{aligned}$

Two current candidates of (α , β)

Large- α (α > β) option (current LiteBIRD nominal): hitmap

 α =65°, β =30°, α + β =95°, precession time=1.51 hrs, spin revolution rate=0.1 rpm

 α =45°, β =50°, α + β =95°, precession time=1.51 hrs, spin revolution rate=0.1 rpm Smaller hole (α ~ β)

- It is also important to consider "re-visit" to remove possible time-dependent effect
- Studies to decide the scan parameter is currently ongoing using realistic simulation & data analysis tools.

Summary

- The LiteBIRD is next-generation satellite project aiming to probe very early stage of the universe through measurement of the CMB B-mode polarization.
- It has sensitivity to scalar-tensor ratio of $\delta r < 0.001$ which proves inflation scenario, and even identify right model in many inflation models.
- To eliminate systematic uncertainties, definition of certain scan strategy to suppress cross-link is important.
- There are also many factors (e.g. revisiting, satellite structure) which are affected by the scan strategy.
- Considering those factors, study for determination of scan strategy parameters is extensively ongoing.
- The scan strategy parameter will be settled soon (Sep~Oct).

Backups

spin-2 cross-link

(Nominal values : α =65°, β =30°, α + β =95°, precession time=1.51 hrs, spin revolution rate=0.3r pm)

Symbol	Description	Value set to in relevant simulation
ψ	The orientation of the scan direction with respect to North	Varies with scan strategy, position and time
\tilde{h}_n	The average of the complex exponential of the orientations for a pixel, $\langle e^{in\psi}\rangle_{\rm hits}$	Varies with scan and pixel
FWHM	the full width at half the maximum of the beam	7 arcmin for all the simulations
δg_i	The differential gain between the two detectors in pair i	0.01 for both detector pairs
$ ho_i$	The angle between the two beam centres in pair i	0.1 arcmin for both (1.5% of the FWHM)
χ_i	The orientation of the second beam from the first in a detector pair i relative to the direction of the scan	0 and $\pi/4$
$b_{\ell m}$	The spherical harmonic decomposition of the temper- ature beam	That of an elliptical Gaussian — see equation (29)
$\delta b^i_{\ell m}$	The spherical harmonic decomposition of the difference of the temperature beams of pair i	That of an elliptical Gaussian — see equation (29)
q	Ellipticity parameter for the elliptical Gaussian beam. Note that $q = 1$ is axisymmetric (see equation 29). q is also the ratio of the major and minor axes of the ellipse.	1.05 and 1

 Table 1. Description of the variables used in the analysis (see Sections 2 & 3 in the main text) and the values adopted for the simulations.

Scan	Boresight angle (β)	Precession angle (α)	Spin period (T_{spin})	Precession period $(T_{\rm prec})$
Planck	85°	7.5°	1 min	6 months
WMAP	70°	22.5°	129 s	1 hr
EPIC	50°	45°	1 min	3 hrs

 Table 2. Observational parameters used to generate the scan strategies for the simulations described in Section 3

arXiv:1604.02290v1

Parameters/strategies which (may) need to be considered for the scan optimization

- All-sky scan(α + β =95°)
- Cross-link
- Hit uniformity
- How useful is it for destriping?
- Stepped/continuous precession?
- Jack-knife availability
- ADR cycling (30 hrs) and its dead-time (15%)
- Galaxy masking (f_{sky}~0.5)
- Heat issues, mission-part structure ... need assesment from optical / structure viewpoint
- Any synchronous effect with other devices
- Any others (e.g. data transfer rate)?

those had been dominant targets so far

Revisit time optimization

Foreground separation by multi-band measurement

Scan strategy comparison

	WMAP	Planck	Litebird (fast spin)	EPIC	ESA M5 (arXiv:1604.02290)
Concept& Priority	Scan a pixel with many azimth angle, Comparison with COBE	Simplicity : Sun aspect angle constant to minimize thermal variation	Cross-link & Hit uniformity (+Jack-knife test?)	Cross-link & Jack-knife test	Cross-link (multi-spin)
Scan parameters	α =22.5° β =70° Prec = 1 hr Spin = 0.45 rpm	α =7.5° β =85° Prec = 6 months Spin = 1 rpm	α =65° β =30° Prec = 1.51 hrs Spin = 0.3 rpm	α =45° β =55° Prec = 3.2 hrs Spin = 1 rpm (option-?)	α =45° β =50° Prec = 40 hrs Spin = 0.4 rpm etc.
Cross-link map					
References/notes	http:// map.gsfc.nasa.go v/mission/ observatory_scan .html	https:// wiki.cosmos.esa.i nt/planckpla/ index.php/ Survey_scanning_ and_performance et al.	ADR heat cycle ~ 30 hrs	arXiv:0805.4207 0906.1188	arXiv: 1604.02290

αに関連するハードウェアなどの事項

• 衛星の構造。特に熱的なもの。基本的に衛星と外部との

インターフェース

- 太陽光からの照射
- 排熱板
- -開口近辺の影
- ・ 光学系
 サイドローブへの太陽・地球・月からの漏れ込み
- ・太陽電池パネルのサイジング
- テレメトリーアンテナ
 X/S バンド両方
- スラスターの位置・推薬の量
- ・ RWへの要求

βに関連するハードウェアなどの事 項

- HWPの設置位置・角度
- ・ 光学系とその支持構造の設置位置・角度
 - 衛星の筐体の大きさ
 - シェル内部熱構造
 - シェル内部迷光・反射
- サブK冷凍機の配置
 - JT/ST冷凍機の配置・配線
- 焦点面検出器配置
 - ハーネスの長さ
 - 熱流入