Optimization of the LiteBIRD Scan Strategy

S. Uozumi (Okayama Univ.) for the LiteBIRD Phase-A1 working group 2017 Apr-20th JPS meeting @ Osaka Univ.

- Those nominal scanning values had been first defined on 2015-Feb MDR (Mission Definition Review.)
- However we come back to decide scan parameters because international review(2016) pointed more consideration on revisit time.

Scan Strategy (from a view of scientific output)

- The strategy should be determined from the science points of view.
- We are working on an option w/o HWP: we think the w/o HWP option can also cover a part of the w/ HWP option (if it fails) in systematic uncertainties.
- Elements to decide the strategy used in the current study :
 - Hit uniformity
 - Cross link values.
 - Revisit time and Jack-knife test (null-test) availability
 - Spin / precession rate determination based on
 - 1/f noise mitigation (w/o HWP)
 - Test with realistic simulation

- Main topic of this report
- Two candidates determined (will be explained in later slides) :
 - Large- α option : α =65°, β =30°
 - Small- α option : α =45°, β =50°

two candidates of scanning angle configuration (reported at previous JPS meeting)

 α =65°, β =30°, α + β =95°, precession time=1.51 hrs, spin revolution rate=0.1 rpm Small- α ($\alpha < \beta$) option :

 α =45°, β =50°, α + β =95°, precession time=1.51 hrs, spin revolution rate=0.1 rpm Smaller hole (α ~ β)

Note : we have limitations :
On precession time from ADR recycling ... 30 hours
On spin rate from mechanical limit ... ~ 0.3 rpm

A list of items related with the scan strategy

Items	Alpha=65/Beta=30	Alpha=45/Beta=50	Comments	
Cross links	0	0	Large- α is slightly better than smaller- α	
Hit uniformity	Larger hole, smaller RMS	Smaller hole, Larger RMS		
Revisit time uniformity	Δ (larger gaps in Δt dist.)	0	Hole size also affects to revisit time	
1/f noise mit. w/o HWP	Δ	Δ	No specific difference, but depends on spin rate	
Thermal (External Interfaces)	Earth+moon to 4K: 0mW Sun to outer shell:794W Shadow: TBC	Earth+moon to 4K: OmW Sun to outer shell: 911W Shadow: TBC	Light from earth/moon, Heat radiation plates, Shadow around the aperture <u>Values for α=65 are in the case of on Lissajous orbit , no</u> <u>orbit dependencies when α=45</u>	
Thermal (Internal Interfaces)			Optical system support structure, Thermal Interfaces among the cold mission components, Thermal distribution	
Optics	Baffle requirements: h>300mm	Baffle requirements: h>300mm	Side-lobe, Support Structure, Stray light <u>Values for α=65 are in the case of on Lissajous orbit, no</u> <u>orbit dependencies when α=45</u>	
Solar panel	Requirement: > 3894 W	Requirement: > 4990 W	Sizing	
Telemetry			Antennas for X/S bands	
Thruster/propellant	Propellant : 542.0kg (Lissajous)	Propellant : 255.9kg (Halo)	Position of Thruster, amount of propellant	
Reaction Wheel			Specification	
HWP			Position/Angle	
Refrigerators	2ST × 3 + JT × 2	2ST × 3 + JT × 2	Positions, Interfaces, Thermal conduction, Vibration	
Focal plane detector			Thermal interfaces, Length of harness	
Cost				
mass	4K shell + absorbers + mag shield: 83.3kg	4K shell + absorbers + mag shield: 89.4ka	Values for α =65 are in the case of on Lissajous orbit , no orbit dependencies when α =45	

Destriper+mapmaker – MADAM

https://arxiv.org/pdf/0907.0367v2.pdf https://arxiv.org/abs/astro-ph/0412517

- Separate noise into high frequecy white noise + lower frequency 1/f noise.
- 1/f noise is modeled by step function (Legendre function also available)
- "baseline length" of the step function of sky pixel resolution are the key tuning parameters according to first paper.

- Sort of CMB signal, white noise,
 1/f noise are disentangled by a sort of math (first paper eq. 4-8)
- Revisiting gives constraints to shape of the 1/f noise

Scheme

Frequency-domain evaluation (1-day data)

Nominal parameters:

White + 1/f noise only Large-alpha case fknee = 0.05 Hz alpha = 1.5fmin = 1day⁻¹ Baseline = 1 sec. Nside=1024Spin = 0.1 rpm

... with large/small-alpha case (prec. angle α =65°, 45°)

By MADAM destriping, 1/f part is totally gone in this view!!

Power-spectra evaluation (1yr-data)

MADAM w/o HWP shows somehow reasonable performance to eliminate 1/f noise effect. (a bit better for large-alpha option?)

• Case A : $f_{knee} = 0.05$ Hz, $\alpha = 1.0$, sampling rate = 23 Hz, precession time = 93 mins.

Mean of 60 noise MC trials Same plots but w/ or w/o error bars

- Advantage to increase spin from 0.1 to 0.3 rpm
- No significant gain in > 0.3~0.5 rpm

• Case B : $f_{knee} = 0.05$ Hz, $\alpha = 1.0$, sampling rate = 23 Hz, precession time = 24 hrs (1440 mins).

Mean of 60 noise MC trials Same plots but w/ or w/o error bars

- No visible difference with precession time 93 mins and 24 hrs.
- No significant gain in > 0.3~0.5 rpm

• Case C : $f_{knee} = 0.15$ Hz, $\alpha = 1.0$, sampling rate = 23 Hz, precession time = 93 mins.

Mean of 60 noise MC trials Same plots but w/ or w/o error bars

- Large f_{knee} largely affects 1/f noise effect
- Advantage to increase spin from 0.1 to 0.3 rpm
- No significant gain in > 0.3~0.5 rpm

Summary & Conclusion

- To determine the scan strategy, we need "reasonable" consideration of scientific & mechanical & cost-mass issues.
- For scientific view :
 - Two candidate configurations determined
 - 1/f noise is affected by spin rate, but not precession time
 - Suggested spin rate is 0.3-0.5 rpm
- Cost & mass are also important driver, but need estimation by company for quantitative
- Based on those, we should judge which scan strategy option is more reasonable.

Supplements

• Case A : $f_{knee} = 0.05$ Hz, $\alpha = 1.0$, sampling rate = 23 Hz, precession time = 93 mins.

- Lines with different spins do not distribute linearly (saturation effect seen)
- No significant gain in > 0.3~0.5 rpm

Case B : $f_{knee} = 0.05$ Hz, $\alpha = 1.0$, sampling rate = 23 Hz, precession time = 24 hrs (1440 mins).

Spin rate dependence of C_I^{BB}

- Saturation effect also seen in long precession time.
- No significant gain in > 0.3~0.5 rpm

Case C : $f_{knee} = 0.15$ Hz, $\alpha = 1.0$, sampling rate = 23 Hz, precession time = 93 mins.

Spin rate dependence of C_I^{BB}

- Tendency of saturation is same with case A and B
- No significant gain in > 0.3~0.5 rpm

Optimization of the LiteBIRD Scan Strategy

S. Uozumi (Okayama Univ.) for the LiteBIRD Phase-A1 working group 2017 Jan-23th B mode from space WS @ Montreal

Some more thoughts

- Sampling rate (relates to time constant)
- Precession time & spin rate optimization?
- Practical method of glitch removal?
- Stepped precession option?
- Large- β works better for gain calibration?
- What combinations of Jack-knife (null-test) works for TABLE 4 various expected or unexpected syst measurement?

(refer BICEP2 arXiv:1502.00608)

- ADR recycling loss (~15%)
- Galaxy masking
- Katayama-san's option (moving precession axis)

INSTRUMENTAL SYSTEMATICS

Systematic	Characteristic r
crosstalk	$\simeq 3.2 \times 10^{-3}$
beams (including gain mismatch)	$< 3.0 \times 10^{-3}$
EMI	$< 1.7 \times 10^{-3}$
cross polar response	$< 10^{-3}$
detector transfer functions	$< 5.7 \times 10^{-4}$
systematic polarization angle error	$< 4.0 \times 10^{-4}$
gain variation $E \rightarrow B$	$< 5.3 \times 10^{-5}$
random polarization angle error	$< 5.0 \times 10^{-5}$
thermal fluctuations	$< 1.2 \times 10^{-5}$
ghost beams	$\simeq 7.2 imes 10^{-6}$
scan synchronous contamination	$< 1 \times 10^{-8}$

NOTE. — The comparable characteristic r of BICEP2's statistical uncertainty is $r = 3.1 \times 10^{-2}$.

Total

 $\simeq (3.2-6.5) \times 10^{-3}$

Revisit time distribution (1-day timescale)

precession time = 1.51 hrs, spin rate = 0.1 rpm Scan time = 1yr, full detector

Situation at Planck

- Planck has 60 rings at same place, stepped precession
- Long-time revisit (6 months), 5 sets of full-sky map in total
- Jack-knife worked in various situation

correction

- Short-term : cosmic ray glitch removal
- Mid-term : destriping (1/f noise removal)
- Long-term : time constant elimination (beam symmetrization)

Temperature-to-polarization leakage

- ADC non-linearity correction (appeard as gain variation)
- Almost of those are unexpected issues before launching, but rescued by enough amount of redundancy of data.

What we can think of for LB case?

- $\alpha + \beta \sim 95^{\circ}$ (Full sky coverage + avoid sun side-robe) ... sacred
- Small cross-link ... fundamentally important for polarization measurement Also works to symmetrize beam shape
- Destriping ... If possible, doing in several time scales is better
- Jack-knife availability for unexpected problem ... with various time-scales
- What to do with cosmic-ray glitch removal?
 - Stepped precession? It has pros (easy to analyze) and cons (sparse scan, satellite stabilization)
 - Template removal method?
 - I suggest to keep both options in current phase
- Requirement for sensors ... make time constant as short as possible
- In-flight time constant modeling? With cosmics or Jupiter?
- Small- β would work better for gain calibration (to catch CMB dipole in a short time)
- Single-detector mapping?

Table 1: Summary of systematics. The requirements are estimated so that each systematic item results in 1% of lensing B-mode spectrum in amplitude. The expected measurement errors are the obtained using simulations We categorize the individual systematics with and without HWP.

Id	types	Requirements	Exp. meas. error	Comments	w/ HWP	w/o HWP
1	Diff. gain	$< 0.002\%$ (bias, $\ell = 2$, a pair)	0.002% (per year)	CMB dipole calibration yields 0.4% un-		
		$< 0.06\%$ (bias, $\ell = 200$, a pair)	0.4% (600 sec)	certainty for the diff. gain of a single		
		$< 0.04\%$ (rand. $\ell = 2$, a pair)		pair. Meas, error assumes random diff.		
		$< 0.2\%$ (rand $\ell = 200$ a pair)		gain variation in time with 600 sec time		
		$< 0.04\%$ (bias $\ell = 2$ array)		scale without any obvious trend Bias is		
		(0.0470 (0.003), c = 2, array)		assume to be stable. If the gain vari-		
				assume to be stable. If the gain vall-		
				the small number of personators, the re-		
				the small number of parameters, the re-		
	Diff. 1	(4 0)		quirements can be less stringent.		
2	Diff. beam point.	$< 4 \operatorname{arcsec} (\ell = 2)$	2 arcsec @40 GHz	-30 dB meas. of beam using Jupiter		✓
		$< 2 \operatorname{arcsec} (\ell = 200)$		that enter the beam accidentally during		
L				the scan.		
3	Diff. beam	$< 7\% \ (\ell = 2)$	$\sim 0.1\%$	With -40 dB measurements of beam us-		√
	ellipticity	$< 0.04\% \ (\ell = 200)$		ing Jupiter observation mode.		
4	Diff. beam width	$< 0.8\% \ (\ell = 2)$	$\sim 0.1\%$	With -40 dB measurements of beam us-		\checkmark
		$< 0.2\% \ (\ell = 200)$		ing Jupiter observation mode.		
5	Diff. side-lobe	< -40 dB	-40 dB	With -40 dB measurements of beam us-		\checkmark
				ing Jupiter observation mode.		
6.1	Near Side-lobe	< -40 dB	TBD	Near side-lobe is determined with a pre-		\checkmark
				cision of less than -40 dB from the		l ř
				Jupiter observation mode		
62	Near Side-lobe	TBD	TBD	Need to check polarization of the near		
0.2	rical blue-lobe		100	side lobe	·	
71	The Olds Jaka	700	TDD	March a serie serie have been and have from		/
1.1	Far Side-lobe	TBD	TBD	May be spin synchronous leakage from		✓
-	D (1111)	7722		the sun and the center of galaxy.		
7.2	Far Side-lobe	TBD	TBD	Need to check polarization of the far side	√	
				lobe.		
8	HWP instr. pol.	< 0.03%	< 0.03%	ABS team's achievement.	√	
	at 4f					
9	Pol. efficiency	< 1%	TBD	From ground calibration or C_{ℓ}^{EE} etc.		
10	Single. det. gain	< 10% (600 sec)	0.6%	From the CMB dipole calibration	\checkmark	\checkmark
	var. in time					
11	Single. det. Abs.	Not considered hear, as the parity is conserved and no effect in E to B leakage			\checkmark	\checkmark
	gain					
12	Pointing knowl-	< 3 arcmin	0.23 arcmin	Star tracker specification	\checkmark	\checkmark
	edge of bore-sight					
13	Abs. pol. angle	< 1 arcmin	1 arcmin	Simulations with C_{ϵ}^{EB}	1	./
14.1	1/f noise f	$f_{\rm c}$ (pairdiff) < spin rate	TBD	For a spin rate of 0.3 rpm, a naive re-	× ·	
14.1	1/J HOISE Jknee	Jknee(pandin.) < spin rate		for a spin rate of 0.5 rpin, a naive re-		v
				This may need to be more stringent if		
				This may need to be more stringent if	/	
				we consider loss in S/N filtering. The re-	/	
				quirement may be relaxed with a proper		
			(77) D	de-striper.	ļ	
14.2	$1/f$ noise f_{knee}	$f_{\rm knee} < 1 {\rm mHz}$	TBD	The requirement of 1 mHz comes by	√	
				setting 10% of the $1/f_{\text{knee}}$ with respect		
				to the white noise level at $\ell = 2$ with		
				the spin rate of 0.1 rpm and $\alpha = 2$,		
				where α is the slope index. The study in		
				progress to assess the benefit of the de-	/	
				striping map making and the penalty by		
				filtering.		
15	Cosmic rav	TBD	TBD	Simulation estimation using	1	v/
	glitches			de-glitching.	l ,	, r
16.1	Band pass	TBD	TBD	Simulation estimation using. Spurious		,/
10.1	mismatch			terms		v
16.9	Detection	TRD	TRD	This offect is begienly mitigated by the		
10.2	officiency dence	100	100	Af demodulation as this effect are	▼ 1	
	dence			a the 2 f modulation		
	dence			as the $2f$ modulation.	/	
	on the HWP rota-				/	
	tion angle					

Parameters/strategies which (may) need to be considered for the scan optimization

- All-sky scan(α + β =95°)
- Cross-link
 those had been dominant targets so far
 - Hit uniformity
 - How useful is it for destriping?
 - Stepped/continuous precession? Revisit time optimization
 - Jack-knife availability
 - ADR cycling (30 hrs) and its dead-time (15%)
 - Galaxy masking (f_{sky}~0.5)
 - Heat issues, mission-part structure ... need assessment from optical / structure viewpoint
 - Any synchronous effect with other devices
 - Any others (e.g. data transfer rate)?

Cross-link with spin 1-4

Vary α under condition $\alpha+\beta=95^{\circ}$, precession time=1.51 hrs, spin revolution rate=0.3 rpm

concerning the cross-link.

Hit unifirmity is comparable between small & large α cases.

Cross-link for Jack-knife (null-test) One-day cross-link (spin-2) maps

α=65°, β=30°

- Remove 1/f noise by normalizing signal at reference points
- Actual procedure not yet established for LiteBIRD
- May need to perform simulation of destriping with different configurations :
 - Different α , precession times, spin rates
 - Stepped or continuous precession

Stepped precession?

An other option

- Moving precession axis (Katayama-san)
 Possibility to make α smaller
 - However it would make scan strategy complicated...
 - Configurations? (e.g. moving style, speed, etc...)
 - Feasibility for satellite structure ?
 - Would be good to keep in our mind until main strategy candidates will be established.

Longer precession time

No significant dependence in long precession time range.

Scan results (spin-1 cross-link)

Scan results (spin-2 cross-link)

Scan results (spin-3 cross-link)

Scan results (spin-4 cross-link)

Scan strategy comparison

	WMAP	Planck	Litebird (fast spin)	EPIC	ESA M5 (arXiv:1604.02290)
Concept& Priority	Scan a pixel with many azimth angle, Comparison with COBE	Simplicity : Sun aspect angle constant to minimize thermal variation	Cross-link & Hit uniformity (+Jack-knife test?)	Cross-link & Jack-knife test	Cross-link (multi-spin)
Scan parameters	$\begin{array}{l} \alpha = 22.5^{\circ} \\ \beta = 70^{\circ} \\ \text{Prec} = 1 \text{ hr} \\ \text{Spin} = 0.45 \text{ rpm} \end{array}$	α =7.5° β =85° Prec = 6 months Spin = 1 rpm	$\begin{array}{l} \alpha = 65^{\circ} \\ \beta = 30^{\circ} \\ \text{Prec} = 1.51 \text{ hrs} \\ \text{Spin} = 0.3 \text{ rpm} \end{array}$	$\alpha = 45^{\circ}$ $\beta = 55^{\circ}$ Prec = 3.2 hrs Spin = 1 rpm (option-?)	$\begin{array}{l} \alpha = 45^{\circ} \\ \beta = 50^{\circ} \\ \text{Prec} = 40 \text{ hrs} \\ \text{Spin} = 0.4 \text{ rpm} \\ \text{etc.} \end{array}$
Cross-link map				55 - 13	
References/note s	http://map.gsfc. nasa.gov/missio n/observatory_s can.html	https://wiki.cosm os.esa.int/planc kpla/index.php/ Survey_scannin g_and_performa nce et al.	ADR heat cycle ~ 30 hrs	arXiv:0805.420 7 0906.1188	arXiv: 1604.02290

Hit distribution (LiteBIRD spin=0.3rpm, varying alpha, beta)

Exact Relation

$$S = \frac{1}{\sqrt{\pi}}$$

Npu = 12 · 123⁴ = 1966082 et 132
Spix = S/Npix ~ 2. 17× 10⁵ X 3
pixel to to to X 32
CAPPIN Lpix = $\sqrt{5}/Npix = 4.62 \times 10^{-3}$ X Sqrt(3)
zet 57 to to X 10 to X = 4.62 × 10⁻³ X Sqrt(3)
zet 57 to To Exect to X to X = 0 to Y.
Relation Lpixes
 $X = 65^{\circ} t^{\circ}$ for Exect to X to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X = 0 to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X.
 $X = 65^{\circ} t^{\circ}$ for Exect to X.
 $Y = 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123 + 123 + 123 + 123 + 123 + 123 + 123$.
 $Y = 123 + 123$

Simple statistical modeling ?

MADAM baseline scan

small-alpha option Large-alpha option 10⁻¹⁶ 10-15 MADAM base=0.5sec MADAM base=0.5sec MADAM base=1.0sec MADAM base=1.0sec MADAM base=10sec MADAM base=10sec w/ HWP w/ HWP 10⁻¹⁶ ₩ 10⁻¹⁷ Cl∧BB 10^{-17} 10⁻¹⁸ 10^{-18} 10⁰ 10⁰ 10^{1} 10^{2} 10^{3} 10^{1} 10² 10^{3} ell ell

No much difference with baseline length among 0.5-10 sec -> Omit from scan parameter list in the next iteration

MADAM resolution (Nside)

Large-alpha option

small-alpha option

Somehow working, but a weird behavior observed. Need more finer scan or more stat. for more understanding?

fknee scan

small-alpha option Large-alpha option 10⁻¹⁵ 10-15 MADAM fkee=0.015 MADAM fkee=0.015 MADAM fkee=0.05 MADAM fkee=0.05 MADAM fkee=0.15 MADAM fkee=0.15 w/ HWP w/ HWP 10⁻¹⁶ 10⁻¹⁶ CI^BB CI^BB 10⁻¹⁷ 10⁻¹⁷ 10-18 10⁻¹⁸ 10² 10³ 10⁰ 10¹ 10^{0} 10¹ 10² 10^{3} ell ell

- Change on fknee 0.05 Hz -> 0.15 Hz makes big difference, while fknee < 0.05 Hz sh consistent results.
- Finer scan between fknee >0.05 Hz needed?
- What is the most reliable value of fknee we can have now?

Alpha (noise parameter) scan

- Change on fknee 1.5 -> 2.0 makes big difference, while alpha < 1.5 show consistent results.
- Finer scan between alpha =1.5~2.0 needed?
- What is the most reliable value of alpha we can have now?

Effect of spin

- In both large/small-alpha cases, spin=0.3 rpm shows consistently good result with the with the HWP.
- Worthwhile to do finer scan for spin=0.1~0.3, or faster?

Pixel ID (Npix=196608)

