LiteBIRD

Hirokazu Ishino (Okayama University) on behalf of the LiteBIRD WG June 27, 2016 SPIE, Edinburgh

LiteBIRD

Lite (Light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

http://litebird.jp/

LiteBIRD is a next generation scientific satellite aiming to measure polarization of Comic Microwave Background (CMB) at unprecedented sensitivity.

Mission Requirements:

- Measurement of B-mode polarization spectrum of large angular scale $(2 \le l \le 200)$ by three-year observation of all sky.
- Measurement of the tensor-to-scaler ratio r, that represents primordial gravitational waves, at $\delta r < 0.001$ precision. (w/o subtracting the gravitational lensing effect.)

	JAXA T. Dotani H. Fuke	Osaka U. S. Kuromiya M. Nakajima	Kavli IPMU K. Hattori	<u>Kansei</u> <u>Gakuin U.</u>	<u>U. Tsukuba</u> M. Nagai	APC Paris R. Stompor	<u>UC Berkeley /</u> LBNL
	H. Imada I. Kawano	S. Takakura K. Takano	Y. Sakurai H. Sugai	S. Matsuura	<u>TIT</u> S. Matsuoka P. Chandra	Cardiff U. G. Pisano	D. Barron J. Borrill Y. Chinone
	T. Matsunara T. Matsumura K. Mitsuda	Osaka Pref. U. M. Inoue	KEK M. Hazumi (PI)	T. Kawasaki Konan U.	K. Chendra <u>U. Tokyo</u> S. Sakiguahi	Paris ILP J. Errard	A. Cukierman T. de Haan N. Goeckner-wald
	K. Nishijo A. Noda	K. Kimura H. Ogawa N. Okada	N. Hasegawa N. Kimura K. Kohri M. Maki Y. Minami T. Nagasaki R. Nagata H. Nishino S. Oguri T. Okamura N. Sato J. Suzuki T. Suzuki O. Tajima T. Tomaru	I. Onta <u>NAOJ</u> A. Dominjon T. Hasebe J. Inatani K. Karatsu S. Kashima T. Noguchi Y. Sekimoto M. Sekine	T. Shimizu S. Shu	CU Boulder N. Halverson	P. Harvey C. Hill W. Holzapfel Y. Hori O. Jeong R. Keskitalo T. Kisner A. Kusaka A. Lee(US PI)
	A. Okamoto S. Sakai Y. Sato	Okayama U. T. Funaki			Tohoku U.	McGill U. M. Dobbs	
	K. Shinozaki H. Sugita Y. Takei	H. Ishino A. Kibayashi			M. Hattori Nagoya U.	<u>MPA</u> E. Komatsu	
	S. Utsunomiya T. Wada R. Yamamoto	Y. Kida K. Komatsu S. Uozumi			K. Ichiki <u>Yokohama</u> <u>Natl. U.</u> T. Fujino F. Irie	NIST G. Hilton	E. Linder P. Richards U. Seljak
	N. Yamasaki T. Yoshida K. Yotsumoto	Y. Yamada <u>NIFS</u>		Saitama U. M. Naruse		Stanford U.	B. Sherwin A. Suzuki P. Turin
S. Takada M. Yoshida			NICT Y. Uzawa	H. Kanai S. Nakamura T. Yamashita	S. Cho K. Irwin S. Kernasovskiy CL. Kuo D. Li T. Namikawa W. Ogburn K. L. Thompson	B. Westbrook N. Whitehorn	
X-ray astrophysicists			SOKENDAI Y. Akiba Y. Inoue H. Ishitsuka Y. Segawa	RIKEN S. Mima C. Otani		UC San Diego T. Elleot B. Keating G. Rebeiz	
IR astronomers				S. Takatori D. Tanabe H. Watanabe	ernational and	<u>U. Wisconsin</u> K. Arnold	(as of Jun 27, 2016

Goal: Verification of inflation using CMB

- Inflationary universe theory predicts generation of primordial gravitational waves.
- Primordial gravitational waves leave a large vortex-like patterns "inflation fingerprint" called B-mode on the CMB polarization map.
- LiteBIRD observes the CMB polarization by precisely scanning all sky in space.

LIGO observes classical gravitational waves.

CMB polarization targets "gravitational waves generated by quantum fluctuations in vacuum"

LiteBIRD Measurement Precision (at r=0.01)

B-mode spectrum due to gravitational lensing $\sim 5 \,\mu \text{K} \cdot \text{arcmin}$

June 27, 2016

Why the $\delta r < 0.001$ goal?

- Many models predict r>0.01. \rightarrow Discovery at >10 σ .
- In case primordial gravitational waves are not seen:
 - Focus on models with less parameters (Occam's Razor)
 - Most single field slow-roll says

$$r\simeq 0.002 igg({60\over N}igg)^2 igg({\Delta\phi\over m_{pl}}igg)^2$$
 Lyth relation

N: e-folding, m_{pl} : reduced Planck mass

- If LiteBIRD achieves r < 0.002 (95%C.L.), those that satisfy $\Delta \phi > m_{\rho l}$ in the typical inflation models are rejected.
 - Important milestone in the goal to identify the correct models.
 - Possible to obtain similar results in more model-dependent analyses.

Achieving the Mission Requirements:

- All-sky survey in space
 - Observation at a large angular scale
 - No effects by atmosphere
- Statistical errors
 - Conduct three years of all-sky observation with 2,622 superconducting sensors, and achieve $2.5 \,\mu$ K arcmin.
- Foreground removal
 - Observation of 15 bands between 40~400GHz
- Systematic errors
 - Mitigation with a Half Wave Plate (HWP)

June 27, 2016

SPIE, Edinburgh

Detector (Transition Edge Sensor, TES)

Low Frequency Telescope (LFT)

The TES array with a lenslet developed for POLARBEAR by UC Berkeley and UCSD.

Focal plane: 0.1K provided by Adiabatic Demagnetization Refrigerator (ADR) 2622 TES bolometers cover 15 bands in the frequency range of 40 to 400 GHz. Total sensitivity: $2.5 \,\mu$ K • arcmin with 3 years all sky observation with a margin factor of 1.7.¹⁰

June 27, 2016

50cm

SPIE, Edinburgh

Optical System

H. Sugai et al. Paper 9904-170

- Beam size : ~< 1 deg.
- FOV: 10 x 20 degs.
- Aperture Size: 40cm

- Cold Baffle and Mirrors
- Half-wave plate to modulate polarization
- Tele-centric

GRASP10 Simulation@60GHz, removing side-lobe w/ baffle

T. Matsumura, K. Kimura, N. Okada

Design of high frequency telescope (HFT)

control sidelobe of feed.

Continuous Rotating HWP

Test Cryostat

Anti-Reflection Coatings for Sapphire Substrate

T. Matsumura et al. Paper 9904-171

T. Matsumura et al., Appl. Opt. 55 (2016)3502

June 27, 2016

Proton Beam Irradiation Test

¹⁶⁰MeV proton beam $^{\sim}$ 10krad irradiation @ NIRS

Hune 27, 201

Millimeter wave transmittance measuring device @ ISAS

Example: Measurement of refractive index before and after irradiation on sapphire

Irradiation test done also for AR, superconducting detector, magnets, etc. T. Matsumura, K. Komatsu, H.I, et al.

SPIE. Edinburgh

Frequency Dependence of the Foregrounds

Foreground Radiation Model (Planck Sky Model)

S(ν,

Synchrotron Radiation Dust Radiation

$$\widehat{\boldsymbol{n}}) = \left(\frac{\nu}{\nu_*}\right)^{\beta_{\rm S}(\widehat{\boldsymbol{n}})} S(\nu_*, \widehat{\boldsymbol{n}}) \qquad D(\nu, \widehat{\boldsymbol{n}}) = \left(\frac{\nu}{\nu_*}\right)^{\beta_{\rm D}(\widehat{\boldsymbol{n}})} D(\nu_*, \widehat{\boldsymbol{n}})$$

$\beta(\widehat{n})$: Spectral Index

Parameter to indicate freq. dependency of foregrounds. (different value for each direction)

Dust+Synchrotron Results "

w/o Noise

T. Yamashita, K. Ichiki, N. Katayama, E. Komatsu

Systematic uncertainties

- The HWPs modulate the polarization of incoming light
 - allowing us to use a single pol. sensitive detector to measure ${\sf Q}$ and ${\sf U}$
 - mitigating the leakage from temperature to polarization and the $1/{\rm f}$ noise
- Remaining systematics:
 - The leakage from E mode to B mode
 - Polarization angle of detector
 - Pointing knowledge
 - Other systematics
 - Side-lobe
 - Cosmic ray glitches
 HWP
 Simulation studies are being the encount of the encount operation of the encount operation of the encount operation.

determination of the spacecraft specification

- A candidate of JAXA's next strategic large missions, aiming to launch in 2024-2025.
- LiteBIRD selected as one of the top-priority projects in Master Plan 2014 by Science Council of Japan.
- LiteBIRD chosen as one of ten new projects in MEXT Roadmap 2014 for Large-scale Research Projects.
- Formal proposal submitted to the ISAS, JAXA in Feb., 2015. First evaluation is passed. Starting the conceptual design phase-A1 in FY2016.
- The US LiteBIRD team has submitted a proposal to NASA's missions of opportunity in Dec. 2014 to supply the focal plane detectors and a sub-Kelvin refrigerator system. It passed the first evaluation, and conceptual study (Phase A) is ongoing.
- Targeted launch date is in JFY 2024.

Summary

- LiteBIRD is a satellite designed to measure the gravitational wave strength at $\delta r < 0.001$ by precisely observing the CMB B-mode polarization.
- It measures B-mode power spectrum in the range of $2 \le \ell \le 200$ at $2.5 \,\mu$ K arcmin sensitivity by observing all-sky with 2622 superconducting detector sensors for three years.
 - Remove foreground radiation in observation frequency range of 40~400GHz with 15 bands.
 - Estimation of systematic errors/calibration accuracy using simulation and requirements of the satellite specifications currently under evaluation.