HFI systematics. Lessons learned

Guillaume Patanchon for the Planck Collaboration

Lessons from Planck

- □ The data analysis and cleaning was a long process and required many iterations
- At the end, we reached the detector fundamental limit for cosmological channels
- □ Some effects were not expected at the level we found them in flight data
 - --> ADC non-linearities
 - --> Long time constants
 - --> Response to cosmic rays
 - --> 1/f noise
 - --> Band-pass mismatch
- □ Coupling between effects was problematic. Ex: 4K lines and ADC non-linearities
- but for future experiment targeting $\sigma_r < 10^{-3}$, systematic effects must be controlled to a higher precision, although many effects will probably scale as 1/Ndet.
- Importance of observation redundancies: different survey, different scanning angle (limited for Planck), different detectors etc..., importance of the dipole, 353 GHz is harder to process
- □ Importance of house keeping data. E.g: fully sampled raw data for the ADC correction.
- Many affect as band-pass mismatch, polarization efficiency, calibration are coupled and need to be corrected at the map-making level, with the help of the dipole

Data reduction

Model of the raw data:

Electronic response 4K lines (A_k, w_k, ...)

$$d_{i}(t) = g_{i} \int R_{i}(t - t') W(t') \left[X_{i}(t') + \sum_{j} T_{ij}(t') \right] dt' + Q_{i}(t) + n_{J_{i}}(t) + \sum_{c} F_{ic}(t) + C_{i}(t) + C_{i}(t') + C$$

Data are digitized, averaged over 40 samples, and compressed on board

Data processing: compression Goal to reach

$$d_i(t_p) = \{B_{\psi_{it_p}} * [S_i + o]\}(\vec{r_{t_p}}) + n_{i;\text{total}}(t_p)\}$$

Symmetrized lobe

Cosmic rays at L2

Cut off due to material around the detectors at $\sim 50 \mbox{ MeV}$

No contribution from solar particles which can not reach the detectors, except during flares

Amplitude of the spectrum at L2 is modulated by solar activity

CR interaction with HFI detectors

Thermal modeling is important. Long time constants come from the links between the wafer and the detector housing - short glitches are direct impact of protons in the grid/thermistor. Should be representative of response to photons.

This was proved with the help of ground tests with alpha particles

Ground tests and thermal modeling

Ground tests did not provide a definitive answer on the thermal path

Simulation of a 23MeV Proton in the silicon die

Cosmic ray removal

Noise in HFI time ordered data

Glitches below the detection threshold common between PSB-a and PSB-b Provide a limit on the level of remaining glitches in data

Lesson learned

CR signals were a rich probe of detector and focal plane parameters, allowing to constrain some systematic effects

Coherent picture of the interaction: Balistic phonons + thermal propagation

- Origin of the low frequency noise, correlated among detectors
 Events on the bolometer plate
- Long time constants

The 2-second TC induces a bias on the power spectrum of ~1-2% if uncorrected

Lessons for future experiments

- All events were detected in Planck!!
- Ballistic phonons helped the detection
- Could create corraleted noise with large wafers

Main systematic effects

- Additive effects : Glitches, unexpected 1/f noise, microphonic noise
- Main effects I to P leakages, different detectors had to be combined to estimate Q and U Stokes parameters
 - ADC non-linearities
 - Band-pass mismatch
 - Long time constants
- Other systematics
 - Beam + time constants

Many effects scale with $\langle \cos 2\Psi \rangle$ and $\langle \sin 2\Psi \rangle$. The use of a HWP and better angle redondancies as planned for LiteBIRD help.

 Use of redundancies of observations and of the strong dipole signal to calibrate and correct the data : Surveys with opposite scanning directions allowed optimization of parameters and correction of many systematic effects.

Survey difference maps

Survey difference maps were useful to track and characterize systematic effect

Beam and transfer function estimation

- Time response is degenerate with the beam response
- The time response and beam shapes are estimated using a combination of planet scans (by symmetrizing the beam shape), galaxy crossings, bias steps (CPV phase) and glitch data.
- The pointing uncertainties (~ 3 arcsec) and glitch is the main source of errors in the main lobe estimation

Corrections of the transfer function at the likelihood optimization stage

ADC non-linearities

ADC correction

The correction is very effective but limited by the 4K line estimation.

Band-pass mismatch

Differences in the band shapes from detector to detector induced intensity to polarization of galactic components when calibrating on CMB

Band-pass mismatch correction

-Band passes were measured from the ground, but leakage coefficients have to be estimated from flight data

$$m = T_{Sky} + (\gamma_{Dust} - 1)T_{Dust} + (\gamma_{CO} - 1)T_{CO} + \dots$$

- Joint estimation of CO and dust leakages at the map-making level. Naturally minimizes the survey difference contamination. Coupled with many effects.

Summary of systematic effects (HFI)

- ADC is the dominant systematic effect
- Its contribution is at the level of the noise at low ells
- Other systematic effects are negligible after processing

