Tokio, 1-2 July 2019 – LiteBIRD kick-off symposium

From Planck to LiteBIRD Instrument and calibration

Marco Bersanelli (University of Milano, INFN, INAF)

and The Planck Collaboration

UNIVERSITÀ DEGLI STUDI DI MILANO

Tokio, 1-2 July 2019 – M. Bersanelli & Planck Collaboration From Planck to LiteBIRD: instruments and calibration

The success of Planck relied on a very demanding calibration effort throughout the project

Planck Collaboration 2018

Many people (virtually all the Planck Collaboration) were involved

UNIVERSITÀ DEGLI STUDI DI MILANO Tokio, 1-2 July 2019 – M. Bersanelli & Planck Collaboration From Planck to LiteBIRD: instruments and calibration

integrating sphere blackbody sources

Planck/HFI PFM

FF

polarizer optical system

estind

2K Saturne plate

Planck Instruments, PPLM, SVM

Thermal requirements were key design driver of Planck payload and satellite

Planck Collaboration A&A 536, A2 (2011)

- Very complex interfaces between PPLM and SVM
- In particular:
 - The 3-stage cooling system (18-20K sorption cooler)
 - Instruments (LFI waveguides)
 - Passive cooling (3rd V-groove at 50K)
- Fully representative instrument configuration was obtained only at satellite integration level
- The CSL cryo facility supported instruments operation in nominal conditions.
 - 4K blackbody calibrator
- CSL test was needed by both LFI and HFI to calibrate Instrument thermal model

Thermal model

LFI key thermal requirements: T and stability at 300, 20 and 4K

- Instrument model:
 - Thermal transfer functions

- (Tomasi et al. 2010, Terenzi et al. 2010)
- Radiometric transfer functions
- Ground calibration at increasing levels of integration (and QM, FM)
- Finalize instrument design (→ *stringent constraints on 18-20K sorption cooler stability*)
- Temperature sensors
- Prepare for in-flight analysis

H/K data from Planck mission

Combined effect of flucturations at 300, 20 and 4K

Thermal effects were controlled to beolw significance thanks to early definition of adequate requirements

Effect	Source	Control/Removal	Reference
	Effects independent of the s	ky signal (temperature and polarization)	
White noise correlation	Phase switch imbalance	Diode weighting	Planck Collaboration III (2014)
1/f noise	RF amplifiers	Pseudo-correlation and destriping	Planck Collaboration III (2014)
Bias fluctuations	RF amplifiers, back-end electronics	Pseudo-correlation and destriping	3.2.5 Planck Collaboration III (2016)
Thermal fluctuations	4-K, 20-K and 300-K thermal stages	Calibration, destriping	3.2.4 Planck Collaboration III (2016)
1-Hz spikes	Back-end electronics	Template fitting and removal	3.2.6 Planck Collaboration III (2016)
Effects dependent on the sky signal (temperature and polarization)			
Main beam ellipticity	Main beams	Accounted for in window function	Planck Collaboration III (2016)
Near sidelobe pickup	Optical response at angles < 5° from the main beam	Masking of Galaxy and point sources	Planck Collaboration II (2016), 2.1.2, 3.2.1 Planck Collaboration III (2016)
Far sidelobe pickup	Main and sub-reflector spillover	Model sidelobes removed from timelines	2.1.1, 3.2.1 Planck Collaboration III (2016)
Analogue-to-digital converter nonlinearity	Back-end analogue-to-digital converter	Template fitting and removal	3.2.3 Planck Collaboration III (2016)
Imperfect photometric calibration	Sidelobe pickup, radiometer noise temperature changes, and other non-idealities	Adaptive smoothing algorithm using 4π beam, 4-K reference load voltage output, temperature sensor data	Planck Collaboration II (2016), 2.2, 3.2.2 Planck Collaboration III (2016)
Pointing	Uncertainties in pointing reconstru- ction, thermal changes affecting focal plane geometry	Negligible impact on anisotropy measurements	2.1, 3.2.1 Planck Collaboration III (2016)
	Effects specific	ally impacting polarization	
Bandpass asymmetries	Differential orthomode transducer and receiver bandpass response	Spurious polarization removal	2.3 Planck Collaboration III (2016)
Polarization angle uncertainty	Uncertainty in the polarization angle in-flight measurement	Negligible impact	2.1.3, 3.2.1 Planck Collaboration III (2016)
Orthomode transducer cross-polarization	Imperfect polarization separation	Negligible impact	Leahy et al. (2010)

LFI potential effects and calibration strategy

Planck Telescope testing

Tauber et al. A&A 520, A2 (2010)

- Photogrammetry of Primary and Secondary Reflectors from 300K to ~95 K
 - Measure curvature R, conic constant k, largescale deformations
- Interferometry at $\lambda{=}10~\mu{m}$ of SR between 300K and ${\sim}40$ K
 - Trace small-scale deformations ("dimples")
- Photogrammetry of telescope structure between 300K and ~95 K
 - Thermoelastic deformations

Estimated surface deformation at 40K

Extrapolate Telescope geometry to 40K

Generate GRASP models at 300K (for testing) and 40K

(Feedhorns beams precisely measured at instrument and unit level)

Secondary

LFI feedhorns design and measurements

Villa et al. JINST 2009

Corrugation profile (sin-squared + exponential) for compactness and high control of sidelobes

$$R(z) = R_{th} + (R_s - R_{th}) \left[(1 - A) \frac{z}{L_s} + A \sin^\beta \left(\frac{\pi}{2} \frac{z}{L_s} \right) \right]$$
$$0 < z < L_s$$

$$R(z) = R_s + e^{\alpha(z - L_s)} - 1; \alpha = \frac{1}{L_e} ln(R_{ap} - R_s)$$

$$L_s < z < L_s + L_s$$

Several frequencies mesured across the-band

Planck RF verification

Planck QM telescope

RFQM:

- Representative focal plane structure
- All relevant payload elements (e.g. baffle, V-groove)
- Test system: CATR at 300K (Thales, Cannes)
- Measure 4π beams of flight-like horns at 30-320 GHz (incl. 2 orthogonal polarizations)

 $20MAX_4$.txt measured in CW (no filtering) with a step of 0.

Comparing RFQM measurements and Optical model (at 300K)

Tauber et al. A&A 520, A2 (2010)

MAIN BEAMS

 $\pm 1\sigma$ measurement error

Model: GRASP physical optics (PO) Consistency with measurements:

- Co-pol: <1% (low freq), 6-7% (high freq)
- Cross-pol: several percent below -40dB Discrepancies attributed to measurement errors and CATR-induced systematics

→ Need to rely on in-flight Planets measurements

Tauber et al. (2019)

LFI beams: GRASP model and in-flight measurement

- Thermo-elastic model to translate 300K best model to flight conditions (40K reflectors, structure)
- Compute bandpass-averaged beams (25 cuts/beam)
- Include effect of OMT cross-pol,
- "Tuned model": fit telescope model parameters (*R*, *k*, alignment) to in-flight data within measurements errors

Typical accuracy for all LFI beams at all 3 frequencies

Final analysys: Hybrid scanning beams

- Data from Jupiter above a S/N floor
- GRASP fiducial model below threshold

LFI far-sidelobes calculation: GRASP MrGTD

Compute scattered field (reflected or diffracted) from each element (backward ray tracing) Challenge: Identify optimal sequence of significant scattering elements

Effect of beam pattern variation inside the detector bandwidth

For 11 LFI horns: ~40K beams were computed... How many for LiteBIRD?

Effect from far sidelobes before subtraction

Q

Planck Collaboration III, 2016

-0.01 µK

-0.05 µK

44

-3.50 µK

U

4.00 µK

2.00 µK

Effect removed in timelines

0.15 µK

Systematic effects - LFI

Planck 70 GHz systematic effects

Angular power spectra of residual systematics in polarization

Planck Collaboraiton 2018

Ready for LiteBIRD !

- LiteBIRD's new exciting objectives:
 - B-modes at r ~ 0.001
 - Cosmic-variance-limited measurement of τ
- Instrument design and testing (x 100 detectors, ...) will be pushed well beyond that achieved by Planck

- The LiteBIRD Team has excellent expertise and motivation
- For LiteBIRD, a coordinated calibration plan (*including thermal, optical aspects*) is already being developed
- Much of the experience gained in Planck will be inherited by LiteBIRD (through papers & reports, technology, especially people)
- An important message from Planck:

Very ambitious challenges can be successfully tackled!

LFI Radiometric Transfer function at 20K

$$\begin{split} T_{f}^{FEM} = & \left(\frac{L_{fh-OMT}}{(G_{F1}+G_{F2})\cdot(1-r)+2\cdot\sqrt{G_{F1}\cdot G_{F2}}\cdot(1+r)}\right) \cdot \left[\left(\frac{\partial G_{F1}}{\partial T_{phys}^{FEM}}\right) \cdot \left((T_{sky}+T_{4K}+2\cdot T_{nF1})\cdot(1-r)+\sqrt{\frac{G_{F2}}{G_{F1}}}\cdot(1+r)\right) + \left(\frac{\partial G_{F2}}{\partial T_{phys}^{FEM}}\right) \cdot \left((T_{sky}+T_{4K}+2\cdot T_{nF2})+(1-r)+\sqrt{\frac{G_{F1}}{G_{F2}}}\cdot(1+r)\right) + \left(\frac{\partial T_{nF1}}{\partial T_{phys}^{FEM}}\right) \cdot \left(2\cdot G_{F1}\cdot(1-r)\right) + \left(\frac{\partial T_{nF2}}{\partial T_{phys}^{FEM}}\right) \cdot \left(2\cdot G_{F2}\cdot(1-r)\right) + \left(1-\frac{1}{L_{fh-OMT}}\right) \cdot \left((G_{F1}+G_{F2})\cdot(1-r)+2\cdot\sqrt{G_{F1}\cdot G_{F2}}\cdot(1+r)\right) + \left(1-\frac{1}{L_{4K}}\right) \cdot \left((G_{F1}+G_{F2})\cdot(1-r)-2\cdot\sqrt{G_{F1}\cdot G_{F2}}\cdot(1+r)\right)\right] \end{split}$$

where:

- *L_i* are insertion losses either for the feed horn–OMT system or for the 4K horn antenna; in our analysis we assume their values estimated from measurements at room temperature;
- *r* is the *gain modulation factor* used to balance the sky and reference output signals; its value is evaluated from the ratio of sky to reference channel mean voltage values;
- G_{Fi} are the front end amplifier gains, whose typical value is about 35 dB
- T_{nFi} are the front end amplifier noise temperatures, evaluated from dedicated tests

Flight H/K data

(Planck Collaboration 2011)

LFI Back-end fluctuations (300K)

LFI Front-end fluctuations (20K)

LFI Reference load fluctuations (4K)

