Measurements from South Pole & CMB-S4

Nils Halverson University of Colorado Boulder for the South Pole Observatory and the CMB-S4 Collaboration

Stage-3 ground based CMB experiments

Current (stage-3) CMB experiments are on sky with ~10,000 detectors per telescope

Chile, Atacama

Simons Observatory (6m, 0.5 m)

South Pole

Measurements from South Pole

South Pole Telescope

Telescope: 10 meter primary

Three generations (SPT-SZ, SPT-Pol, SPT-3G)

SPT-SZ: 960 detectors @ 90/150/220 GHz

•

- SPT-Pol: 1,600 detectors @ 90/150 GHz + Pol
- SPT-3G: 16,000 detectors @ 90/150/220 GHz + Pol •

Some Recent SPT-Pol results

Manzotti, Story, Wu, et al.

"CMB polarization B-mode delensing with SPT-Pol and Herschel"

arXiv:1701.04396 [astro-ph.CO] (2017)

De-lensed SPT-Pol BB with information from SPTpol E-mode maps and a lensing potential map estimated from the Herschel 500µm map of the CIB.

28% reduction in best fit A_L as expected

W. L. K. Wu, L. M. Mocanu, et al.

"A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg² of SPTpol Temperature and Polarization Data"

arXiv:1905.05777 [astro-ph.CO] (2019)

The most precise polarization-only lensing amplitude constraint to date (10.1 σ), and is more precise than our temperature-only constraint

SPT-3G Instrument & Expected Performance

Technology:

- Detector: Lenslet coupled sinuous
 antenna
- Readout: Frequency multiplexing readout (x68)

First light in January 30th 2017

~11,000 detectors routinely in operation

	$95~\mathrm{GHz}$	$150 \mathrm{~GHz}$	$220~\mathrm{GHz}$
Beam FWHM (arcmin)	1.6	1.2	1.1
Optically responsive $N_{\rm bolo}$	3800	3780	3820
$\operatorname{NET}_{\operatorname{bolo},T}\left[\mu\mathrm{K}\sqrt{s}\right]$	630	440	1800
$\operatorname{NET}_{\operatorname{array},T}$ [$\mu \mathrm{K}\sqrt{s}$]	10	8	30
Projected Map Depth [μ K-arcmin]	3	2	9

SPT-3G forecast

4-year 1,500 deg² survey

- $\sigma(\Sigma m_v) = 0.061 \text{ eV}$
- $\sigma(N_{eff}) = 0.058$
- Potential to subtract 2/3 of lensing power
- ~10,000 new clusters for growth probe
- Survey has large overlap with DES, cross correlation – lensing, tSZ, kSZ

Bender, Moriond 2018

7

BICEP/Keck Program

photo: Keith Vanderlinde

BICEP/Keck Experimental Strategy

Abby Vieregg TeVPA (2017)

\rightarrow Small aperture telescopes

→ Target the ~2 degree peak of the Primordial B-mode spectrum → Observe a small patch of clean sky → Integrate continuously from South Pole (high, dry, stable site)

BICEP-Keck Instrument

BICEP-Keck Results

Published B-Mode Sensitivity to r				
Experiment	Year	Bands [GHz]	σ(r)	
DASI	2004	2636	7.5	
BICEP1 2yr	2009	100, 150	0.28	
WMAP 7yr	2010	3060	1.1	
QUIET-Q	2010	43	0.97	
QUIET-W	2012	95	0.85	
BICEP1 3yr	2013	100, 150	0.25	
BICEP2	2014	150	0.10	
BK + Planck	2015	150 + Planck	0.034	
BK14	2015	95, 150 + P	0.024	
ABS	2018	150	0.7	
BK15	2018	95,150,220 + P	0.019	

Keck Array, BICEP2 Collaborations (arXiv:1810.05216 [astro-ph.CO]) - 2018

"BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season"

r < 0.06 (95% c.l.), σ (r) = 0.02 Lensing B-mode detected at 8.8 σ

BICEP-Keck Future Forecasts

- Map sensitivity scaled from on-sky demonstrated: NETs, yields, data cuts, observing efficiency, filtering
- r forecasts use the multi-component foreground dust and synchrotron model from BKP, BK14, BK15
- New collaboration formed with SPT for future delensing

South Pole Observatory (formed from SPT-3G, BICEP2 & BICEP Array)

- 52,000 detectors spanning 30, 40, 95, 150, 220, 270 GHz
- Deep joint large aperture (~2uK arcm) and small aperture (~0.7 uK) survey f_{sky} = 0.03
- Targeting σ(r) ~ 0.0025 with de-lensing by 2023

South Pole Observatory (formed from SPT-3G, BICEP2 & BICEP Array)

- The South Pole site enables deep surveys on a small patch of sky.
- Will use the SPT3G survey to delens the BICEP array data
- The SPT-3G survey depth (~2uK arcm @ 150 GHz) will remove over 2/3 of the lensing power, and will improve the BICEP array r-constraint by a factor of ~2.5.

What is CMB-S4?

- CMB-S4 is a next generation ground-based experiment to pursue inflation, neutrino properties, dark energy, and new discoveries
- Core principle: One project, one collaboration, one dataset, two sites.
- ~500,000 detectors spanning 20-270 GHz using multiple telescopes at Chile and South Pole to map most of the sky, as well as deep targeted fields.
- Broad participation of the CMB community, including members from existing CMB experiments, National Labs, and the High Energy Physics community.
 International partnerships encouraged.
- Joint project between NSF (AST,PHY,OPP) and DOE (HEP), with an estimated cost of ~\$600M, and a start of operations in FY2027.

CMB-S4 Reference Design for nested deep and wide surveys

Wide Neff and Legacy Survey with 2 x 6m telescopes with 240,000 detectors over 6 bands, 7 years.

Deep "r" survey with 18 x 0.55m small refractor telescopes targeting \geq 3% of sky with 150,000 detectors over 8 bands and a dedicated de-lensing 6m telescope with 120,000 detectors, 7 years.

> 18 x 0.55m small telescopes (3 per cryostat), e.g., like BICEP Array

6m large telescopes, e.g., like Simons Obs.

SDSS strip

LSST

Complementary Sky Coverage from the South Pole and Chile

Greatly enhance DES, DESI and LSST science by overlapping sky

CMB-S4 Forecast, Angular Power Spectrum Sensitivity

CMB-S4 Science Goals

...also mm-wave transients, gamma-ray burst, so much more!

CMB-S4 Science Book: https://arxiv.org/abs/1610.02743

What is needed to realize CMB-S4

- Theory/phenomenology
 - Increased precision for analysis; new methods
- Scaling up
 - Detectors
 - Sky area and frequency coverage
 - Multiple telescopes, new designs
 - Computation, data analysis, simulations
 - Project management
- Systematics
 - Improved control, characterization, foreground mitigation

To date, ground-based experiments have been carried out by competing teams, mostly university-led groups. CMB-S4 requires the cooperation and collaboration of the entire CMB community, plus DOE lab production capabilities, and DOE/NSF cooperation and project management.

CMB-S4 Science Collaboration

- CMB-S4 Science Collaboration was established in 2018.
 - 200 members and growing
 - 65 members have leadership (org chart) roles
 - 76 institutions spanning 11 countries
- An Interim Project Office has also been established and is working.
 - CMB-S4 publications:
 - Science Book
 - Technology Book
 - Concept Design Taskforce Report
 - Available at http://cmb-s4.org

Agency roles in CMB-S4

NSF

- Funds the world-leading ground-based CMB efforts (AST, PHY, OPP)
- Leads Stage 2 and 3 efforts, with small but key contributions from DOE
- Critical role in sustaining university efforts into CMB-S4
 - Possible capital investment from NSF for new CMB telescopes

DOE

- Key contributions to Stage 2 and 3 efforts
 - Detectors, readout, computing, large cryogenic components
- Critical role for DOE in scaling up for CMB-S4

NSF and DOE activities will need to be closely coordinated for CMB-S4

Notional DOE/NSF Project Development Timeline

Period	Step	Definition
Q3 FY2019	CD-0	Approve mission need
Q1 FY2021 Q2 FY2021	Lead lab/institution selection Decadal survey result	Lead lab/institution selection
Q2 FY2021	CD-1/3a and CDR review	Approve alternative selection and cost range
FY2022	CD-2 approval, PDR	Approve performance baseline
FY2023	CD-3b, FDR	Approve start of construction
FY2027	CD-4, MREFC project complete	Approve start of operation

Very similar time scale between LiteBIRD and CMB-S4 will benefit both experiments due to their complement data set

Complementarity of ground and space-based measurements – Angular scale, cross-check, de-lensing

- Ground: resolution required for CMB lensing (and delensing), damping tail, clusters
- Space: all-sky, large angular scale for reionization peak
- Cross-check, improve recombination bump constraint with de-lensing, combined analysis to reach better r sensitivity

Complementarity of ground and space-based measurements – Neutrino mass constraint, optical depth

- CMB-S4's neutrino mass constraint is highly limited by degeneracy with the CMB optical depth
- LiteBIRD's access to reionization bump will put a stringent constraint on the optical depth, and enhance neutrino science from CMB-S4.

Complementarity of ground and space-based measurements – frequency coverage, foreground control

Multi-frequency observation is a key for foreground removal

CMB-S4 has 2 bands below LiteBIRD bands. CMB-S4 bands are restricted to atmospheric windows

LiteBIRD has 2 bands above CMB-S4 bands and unrestricted band placement

Conclusion

Princeton CMB-S4 Workshop participants September 2018

Very exciting that two large scale CMB polarization experiments are making progress towards similar deployment/launch schedule

LiteBIRD's and CMB-S4's complementary data set will allow us to do the best science possible

See <u>http://cmb-s4.org</u> for more information